packages/modules/Connectivity/service/native/TrafficController.cpp

855 lines
35 KiB
C++

/*
* Copyright (C) 2022 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#define LOG_TAG "TrafficController"
#include <inttypes.h>
#include <linux/if_ether.h>
#include <linux/in.h>
#include <linux/inet_diag.h>
#include <linux/netlink.h>
#include <linux/sock_diag.h>
#include <linux/unistd.h>
#include <net/if.h>
#include <stdlib.h>
#include <string.h>
#include <sys/socket.h>
#include <sys/stat.h>
#include <sys/types.h>
#include <sys/utsname.h>
#include <sys/wait.h>
#include <map>
#include <mutex>
#include <unordered_set>
#include <vector>
#include <android-base/stringprintf.h>
#include <android-base/strings.h>
#include <android-base/unique_fd.h>
#include <netdutils/StatusOr.h>
#include <netdutils/Syscalls.h>
#include <netdutils/UidConstants.h>
#include <netdutils/Utils.h>
#include <private/android_filesystem_config.h>
#include "TrafficController.h"
#include "bpf/BpfMap.h"
#include "netdutils/DumpWriter.h"
namespace android {
namespace net {
using base::StringPrintf;
using base::unique_fd;
using netdutils::DumpWriter;
using netdutils::NetlinkListener;
using netdutils::NetlinkListenerInterface;
using netdutils::ScopedIndent;
using netdutils::sSyscalls;
using netdutils::Status;
using netdutils::statusFromErrno;
using netdutils::StatusOr;
// constexpr int kSockDiagMsgType = SOCK_DIAG_BY_FAMILY;
// constexpr int kSockDiagDoneMsgType = NLMSG_DONE;
const char* TrafficController::LOCAL_DOZABLE = "fw_dozable";
const char* TrafficController::LOCAL_STANDBY = "fw_standby";
const char* TrafficController::LOCAL_POWERSAVE = "fw_powersave";
const char* TrafficController::LOCAL_RESTRICTED = "fw_restricted";
const char* TrafficController::LOCAL_LOW_POWER_STANDBY = "fw_low_power_standby";
const char* TrafficController::LOCAL_OEM_DENY_1 = "fw_oem_deny_1";
const char* TrafficController::LOCAL_OEM_DENY_2 = "fw_oem_deny_2";
const char* TrafficController::LOCAL_OEM_DENY_3 = "fw_oem_deny_3";
static_assert(BPF_PERMISSION_INTERNET == INetd::PERMISSION_INTERNET,
"Mismatch between BPF and AIDL permissions: PERMISSION_INTERNET");
static_assert(BPF_PERMISSION_UPDATE_DEVICE_STATS == INetd::PERMISSION_UPDATE_DEVICE_STATS,
"Mismatch between BPF and AIDL permissions: PERMISSION_UPDATE_DEVICE_STATS");
#define FLAG_MSG_TRANS(result, flag, value) \
do { \
if ((value) & (flag)) { \
(result).append(" " #flag); \
(value) &= ~(flag); \
} \
} while (0)
const std::string uidMatchTypeToString(uint32_t match) {
std::string matchType;
FLAG_MSG_TRANS(matchType, HAPPY_BOX_MATCH, match);
FLAG_MSG_TRANS(matchType, PENALTY_BOX_MATCH, match);
FLAG_MSG_TRANS(matchType, DOZABLE_MATCH, match);
FLAG_MSG_TRANS(matchType, STANDBY_MATCH, match);
FLAG_MSG_TRANS(matchType, POWERSAVE_MATCH, match);
FLAG_MSG_TRANS(matchType, RESTRICTED_MATCH, match);
FLAG_MSG_TRANS(matchType, LOW_POWER_STANDBY_MATCH, match);
FLAG_MSG_TRANS(matchType, IIF_MATCH, match);
FLAG_MSG_TRANS(matchType, LOCKDOWN_VPN_MATCH, match);
FLAG_MSG_TRANS(matchType, OEM_DENY_1_MATCH, match);
FLAG_MSG_TRANS(matchType, OEM_DENY_2_MATCH, match);
FLAG_MSG_TRANS(matchType, OEM_DENY_3_MATCH, match);
if (match) {
return StringPrintf("Unknown match: %u", match);
}
return matchType;
}
bool TrafficController::hasUpdateDeviceStatsPermission(uid_t uid) {
// This implementation is the same logic as method ActivityManager#checkComponentPermission.
// It implies that the calling uid can never be the same as PER_USER_RANGE.
uint32_t appId = uid % PER_USER_RANGE;
return ((appId == AID_ROOT) || (appId == AID_SYSTEM) ||
mPrivilegedUser.find(appId) != mPrivilegedUser.end());
}
const std::string UidPermissionTypeToString(int permission) {
if (permission == INetd::PERMISSION_NONE) {
return "PERMISSION_NONE";
}
if (permission == INetd::PERMISSION_UNINSTALLED) {
// This should never appear in the map, complain loudly if it does.
return "PERMISSION_UNINSTALLED error!";
}
std::string permissionType;
FLAG_MSG_TRANS(permissionType, BPF_PERMISSION_INTERNET, permission);
FLAG_MSG_TRANS(permissionType, BPF_PERMISSION_UPDATE_DEVICE_STATS, permission);
if (permission) {
return StringPrintf("Unknown permission: %u", permission);
}
return permissionType;
}
StatusOr<std::unique_ptr<NetlinkListenerInterface>> TrafficController::makeSkDestroyListener() {
const auto& sys = sSyscalls.get();
ASSIGN_OR_RETURN(auto event, sys.eventfd(0, EFD_CLOEXEC));
const int domain = AF_NETLINK;
const int type = SOCK_DGRAM | SOCK_CLOEXEC | SOCK_NONBLOCK;
const int protocol = NETLINK_INET_DIAG;
ASSIGN_OR_RETURN(auto sock, sys.socket(domain, type, protocol));
// TODO: if too many sockets are closed too quickly, we can overflow the socket buffer, and
// some entries in mCookieTagMap will not be freed. In order to fix this we would need to
// periodically dump all sockets and remove the tag entries for sockets that have been closed.
// For now, set a large-enough buffer that we can close hundreds of sockets without getting
// ENOBUFS and leaking mCookieTagMap entries.
int rcvbuf = 512 * 1024;
auto ret = sys.setsockopt(sock, SOL_SOCKET, SO_RCVBUF, &rcvbuf, sizeof(rcvbuf));
if (!ret.ok()) {
ALOGW("Failed to set SkDestroyListener buffer size to %d: %s", rcvbuf, ret.msg().c_str());
}
sockaddr_nl addr = {
.nl_family = AF_NETLINK,
.nl_groups = 1 << (SKNLGRP_INET_TCP_DESTROY - 1) | 1 << (SKNLGRP_INET_UDP_DESTROY - 1) |
1 << (SKNLGRP_INET6_TCP_DESTROY - 1) | 1 << (SKNLGRP_INET6_UDP_DESTROY - 1)};
RETURN_IF_NOT_OK(sys.bind(sock, addr));
const sockaddr_nl kernel = {.nl_family = AF_NETLINK};
RETURN_IF_NOT_OK(sys.connect(sock, kernel));
std::unique_ptr<NetlinkListenerInterface> listener =
std::make_unique<NetlinkListener>(std::move(event), std::move(sock), "SkDestroyListen");
return listener;
}
Status TrafficController::initMaps() {
std::lock_guard guard(mMutex);
RETURN_IF_NOT_OK(mCookieTagMap.init(COOKIE_TAG_MAP_PATH));
RETURN_IF_NOT_OK(mUidCounterSetMap.init(UID_COUNTERSET_MAP_PATH));
RETURN_IF_NOT_OK(mAppUidStatsMap.init(APP_UID_STATS_MAP_PATH));
RETURN_IF_NOT_OK(mStatsMapA.init(STATS_MAP_A_PATH));
RETURN_IF_NOT_OK(mStatsMapB.init(STATS_MAP_B_PATH));
RETURN_IF_NOT_OK(mIfaceIndexNameMap.init(IFACE_INDEX_NAME_MAP_PATH));
RETURN_IF_NOT_OK(mIfaceStatsMap.init(IFACE_STATS_MAP_PATH));
RETURN_IF_NOT_OK(mConfigurationMap.init(CONFIGURATION_MAP_PATH));
RETURN_IF_NOT_OK(
mConfigurationMap.writeValue(UID_RULES_CONFIGURATION_KEY, DEFAULT_CONFIG, BPF_ANY));
RETURN_IF_NOT_OK(mConfigurationMap.writeValue(CURRENT_STATS_MAP_CONFIGURATION_KEY, SELECT_MAP_A,
BPF_ANY));
RETURN_IF_NOT_OK(mUidOwnerMap.init(UID_OWNER_MAP_PATH));
RETURN_IF_NOT_OK(mUidOwnerMap.clear());
RETURN_IF_NOT_OK(mUidPermissionMap.init(UID_PERMISSION_MAP_PATH));
return netdutils::status::ok;
}
Status TrafficController::start() {
// RETURN_IF_NOT_OK(initMaps());
// // Fetch the list of currently-existing interfaces. At this point NetlinkHandler is
// // already running, so it will call addInterface() when any new interface appears.
// // TODO: Clean-up addInterface() after interface monitoring is in
// // NetworkStatsService.
// std::map<std::string, uint32_t> ifacePairs;
// ASSIGN_OR_RETURN(ifacePairs, getIfaceList());
// for (const auto& ifacePair:ifacePairs) {
// addInterface(ifacePair.first.c_str(), ifacePair.second);
// }
// auto result = makeSkDestroyListener();
// if (!isOk(result)) {
// ALOGE("Unable to create SkDestroyListener: %s", toString(result).c_str());
// } else {
// mSkDestroyListener = std::move(result.value());
// }
// // Rx handler extracts nfgenmsg looks up and invokes registered dispatch function.
// const auto rxHandler = [this](const nlmsghdr&, const Slice msg) {
// std::lock_guard guard(mMutex);
// inet_diag_msg diagmsg = {};
// if (extract(msg, diagmsg) < sizeof(inet_diag_msg)) {
// ALOGE("Unrecognized netlink message: %s", toString(msg).c_str());
// return;
// }
// uint64_t sock_cookie = static_cast<uint64_t>(diagmsg.id.idiag_cookie[0]) |
// (static_cast<uint64_t>(diagmsg.id.idiag_cookie[1]) << 32);
// Status s = mCookieTagMap.deleteValue(sock_cookie);
// if (!isOk(s) && s.code() != ENOENT) {
// ALOGE("Failed to delete cookie %" PRIx64 ": %s", sock_cookie, toString(s).c_str());
// return;
// }
// };
// expectOk(mSkDestroyListener->subscribe(kSockDiagMsgType, rxHandler));
// // In case multiple netlink message comes in as a stream, we need to handle the rxDone message
// // properly.
// const auto rxDoneHandler = [](const nlmsghdr&, const Slice msg) {
// // Ignore NLMSG_DONE messages
// inet_diag_msg diagmsg = {};
// extract(msg, diagmsg);
// };
// expectOk(mSkDestroyListener->subscribe(kSockDiagDoneMsgType, rxDoneHandler));
return netdutils::status::ok;
}
int TrafficController::addInterface(const char* name, uint32_t ifaceIndex) {
IfaceValue iface;
if (ifaceIndex == 0) {
ALOGE("Unknown interface %s(%d)", name, ifaceIndex);
return -1;
}
strlcpy(iface.name, name, sizeof(IfaceValue));
Status res = mIfaceIndexNameMap.writeValue(ifaceIndex, iface, BPF_ANY);
if (!isOk(res)) {
ALOGE("Failed to add iface %s(%d): %s", name, ifaceIndex, strerror(res.code()));
return -res.code();
}
return 0;
}
Status TrafficController::updateOwnerMapEntry(UidOwnerMatchType match, uid_t uid, FirewallRule rule,
FirewallType type) {
std::lock_guard guard(mMutex);
if ((rule == ALLOW && type == ALLOWLIST) || (rule == DENY && type == DENYLIST)) {
RETURN_IF_NOT_OK(addRule(uid, match));
} else if ((rule == ALLOW && type == DENYLIST) || (rule == DENY && type == ALLOWLIST)) {
RETURN_IF_NOT_OK(removeRule(uid, match));
} else {
//Cannot happen.
return statusFromErrno(EINVAL, "");
}
return netdutils::status::ok;
}
Status TrafficController::removeRule(__unused uint32_t uid, __unused UidOwnerMatchType match) {
// auto oldMatch = mUidOwnerMap.readValue(uid);
// if (oldMatch.ok()) {
// UidOwnerValue newMatch = {
// .iif = (match == IIF_MATCH) ? 0 : oldMatch.value().iif,
// .rule = oldMatch.value().rule & ~match,
// };
// if (newMatch.rule == 0) {
// RETURN_IF_NOT_OK(mUidOwnerMap.deleteValue(uid));
// } else {
// RETURN_IF_NOT_OK(mUidOwnerMap.writeValue(uid, newMatch, BPF_ANY));
// }
// } else {
// return statusFromErrno(ENOENT, StringPrintf("uid: %u does not exist in map", uid));
// }
return netdutils::status::ok;
}
Status TrafficController::addRule(__unused uint32_t uid, UidOwnerMatchType match, uint32_t iif) {
if (match != IIF_MATCH && iif != 0) {
return statusFromErrno(EINVAL, "Non-interface match must have zero interface index");
}
// auto oldMatch = mUidOwnerMap.readValue(uid);
// if (oldMatch.ok()) {
// UidOwnerValue newMatch = {
// .iif = (match == IIF_MATCH) ? iif : oldMatch.value().iif,
// .rule = oldMatch.value().rule | match,
// };
// RETURN_IF_NOT_OK(mUidOwnerMap.writeValue(uid, newMatch, BPF_ANY));
// } else {
// UidOwnerValue newMatch = {
// .iif = iif,
// .rule = match,
// };
// RETURN_IF_NOT_OK(mUidOwnerMap.writeValue(uid, newMatch, BPF_ANY));
// }
return netdutils::status::ok;
}
Status TrafficController::updateUidOwnerMap(const uint32_t uid,
UidOwnerMatchType matchType, IptOp op) {
std::lock_guard guard(mMutex);
if (op == IptOpDelete) {
RETURN_IF_NOT_OK(removeRule(uid, matchType));
} else if (op == IptOpInsert) {
RETURN_IF_NOT_OK(addRule(uid, matchType));
} else {
// Cannot happen.
return statusFromErrno(EINVAL, StringPrintf("invalid IptOp: %d, %d", op, matchType));
}
return netdutils::status::ok;
}
FirewallType TrafficController::getFirewallType(ChildChain chain) {
switch (chain) {
case DOZABLE:
return ALLOWLIST;
case STANDBY:
return DENYLIST;
case POWERSAVE:
return ALLOWLIST;
case RESTRICTED:
return ALLOWLIST;
case LOW_POWER_STANDBY:
return ALLOWLIST;
case LOCKDOWN:
return DENYLIST;
case OEM_DENY_1:
return DENYLIST;
case OEM_DENY_2:
return DENYLIST;
case OEM_DENY_3:
return DENYLIST;
case NONE:
default:
return DENYLIST;
}
}
int TrafficController::changeUidOwnerRule(ChildChain chain, uid_t uid, FirewallRule rule,
FirewallType type) {
Status res;
switch (chain) {
case DOZABLE:
res = updateOwnerMapEntry(DOZABLE_MATCH, uid, rule, type);
break;
case STANDBY:
res = updateOwnerMapEntry(STANDBY_MATCH, uid, rule, type);
break;
case POWERSAVE:
res = updateOwnerMapEntry(POWERSAVE_MATCH, uid, rule, type);
break;
case RESTRICTED:
res = updateOwnerMapEntry(RESTRICTED_MATCH, uid, rule, type);
break;
case LOW_POWER_STANDBY:
res = updateOwnerMapEntry(LOW_POWER_STANDBY_MATCH, uid, rule, type);
break;
case LOCKDOWN:
res = updateOwnerMapEntry(LOCKDOWN_VPN_MATCH, uid, rule, type);
break;
case OEM_DENY_1:
res = updateOwnerMapEntry(OEM_DENY_1_MATCH, uid, rule, type);
break;
case OEM_DENY_2:
res = updateOwnerMapEntry(OEM_DENY_2_MATCH, uid, rule, type);
break;
case OEM_DENY_3:
res = updateOwnerMapEntry(OEM_DENY_3_MATCH, uid, rule, type);
break;
case NONE:
default:
ALOGW("Unknown child chain: %d", chain);
return -EINVAL;
}
if (!isOk(res)) {
ALOGE("change uid(%u) rule of %d failed: %s, rule: %d, type: %d", uid, chain,
res.msg().c_str(), rule, type);
return -res.code();
}
return 0;
}
Status TrafficController::replaceRulesInMap(__unused const UidOwnerMatchType match,
__unused const std::vector<int32_t>& uids) {
// std::lock_guard guard(mMutex);
// std::set<int32_t> uidSet(uids.begin(), uids.end());
// std::vector<uint32_t> uidsToDelete;
// auto getUidsToDelete = [&uidsToDelete, &uidSet](const uint32_t& key,
// const BpfMap<uint32_t, UidOwnerValue>&) {
// if (uidSet.find((int32_t) key) == uidSet.end()) {
// uidsToDelete.push_back(key);
// }
// return base::Result<void>();
// };
// RETURN_IF_NOT_OK(mUidOwnerMap.iterate(getUidsToDelete));
// for(auto uid : uidsToDelete) {
// RETURN_IF_NOT_OK(removeRule(uid, match));
// }
// for (auto uid : uids) {
// RETURN_IF_NOT_OK(addRule(uid, match));
// }
return netdutils::status::ok;
}
Status TrafficController::addUidInterfaceRules(const int iif,
const std::vector<int32_t>& uidsToAdd) {
std::lock_guard guard(mMutex);
for (auto uid : uidsToAdd) {
netdutils::Status result = addRule(uid, IIF_MATCH, iif);
if (!isOk(result)) {
ALOGW("addRule failed(%d): uid=%d iif=%d", result.code(), uid, iif);
}
}
return netdutils::status::ok;
}
Status TrafficController::removeUidInterfaceRules(const std::vector<int32_t>& uidsToDelete) {
std::lock_guard guard(mMutex);
for (auto uid : uidsToDelete) {
netdutils::Status result = removeRule(uid, IIF_MATCH);
if (!isOk(result)) {
ALOGW("removeRule failed(%d): uid=%d", result.code(), uid);
}
}
return netdutils::status::ok;
}
int TrafficController::replaceUidOwnerMap(const std::string& name, bool isAllowlist __unused,
const std::vector<int32_t>& uids) {
// FirewallRule rule = isAllowlist ? ALLOW : DENY;
// FirewallType type = isAllowlist ? ALLOWLIST : DENYLIST;
Status res;
if (!name.compare(LOCAL_DOZABLE)) {
res = replaceRulesInMap(DOZABLE_MATCH, uids);
} else if (!name.compare(LOCAL_STANDBY)) {
res = replaceRulesInMap(STANDBY_MATCH, uids);
} else if (!name.compare(LOCAL_POWERSAVE)) {
res = replaceRulesInMap(POWERSAVE_MATCH, uids);
} else if (!name.compare(LOCAL_RESTRICTED)) {
res = replaceRulesInMap(RESTRICTED_MATCH, uids);
} else if (!name.compare(LOCAL_LOW_POWER_STANDBY)) {
res = replaceRulesInMap(LOW_POWER_STANDBY_MATCH, uids);
} else if (!name.compare(LOCAL_OEM_DENY_1)) {
res = replaceRulesInMap(OEM_DENY_1_MATCH, uids);
} else if (!name.compare(LOCAL_OEM_DENY_2)) {
res = replaceRulesInMap(OEM_DENY_2_MATCH, uids);
} else if (!name.compare(LOCAL_OEM_DENY_3)) {
res = replaceRulesInMap(OEM_DENY_3_MATCH, uids);
} else {
ALOGE("unknown chain name: %s", name.c_str());
return -EINVAL;
}
if (!isOk(res)) {
ALOGE("Failed to clean up chain: %s: %s", name.c_str(), res.msg().c_str());
return -res.code();
}
return 0;
}
int TrafficController::toggleUidOwnerMap(__unused ChildChain chain, __unused bool enable) {
// std::lock_guard guard(mMutex);
// uint32_t key = UID_RULES_CONFIGURATION_KEY;
// auto oldConfigure = mConfigurationMap.readValue(key);
// if (!oldConfigure.ok()) {
// ALOGE("Cannot read the old configuration from map: %s",
// oldConfigure.error().message().c_str());
// return -oldConfigure.error().code();
// }
// Status res;
// BpfConfig newConfiguration;
// uint32_t match;
// switch (chain) {
// case DOZABLE:
// match = DOZABLE_MATCH;
// break;
// case STANDBY:
// match = STANDBY_MATCH;
// break;
// case POWERSAVE:
// match = POWERSAVE_MATCH;
// break;
// case RESTRICTED:
// match = RESTRICTED_MATCH;
// break;
// case LOW_POWER_STANDBY:
// match = LOW_POWER_STANDBY_MATCH;
// break;
// case OEM_DENY_1:
// match = OEM_DENY_1_MATCH;
// break;
// case OEM_DENY_2:
// match = OEM_DENY_2_MATCH;
// break;
// case OEM_DENY_3:
// match = OEM_DENY_3_MATCH;
// break;
// default:
// return -EINVAL;
// }
// newConfiguration =
// enable ? (oldConfigure.value() | match) : (oldConfigure.value() & (~match));
// res = mConfigurationMap.writeValue(key, newConfiguration, BPF_EXIST);
// if (!isOk(res)) {
// ALOGE("Failed to toggleUidOwnerMap(%d): %s", chain, res.msg().c_str());
// }
// return -res.code();
return 0;
}
Status TrafficController::swapActiveStatsMap() {
// std::lock_guard guard(mMutex);
// uint32_t key = CURRENT_STATS_MAP_CONFIGURATION_KEY;
// auto oldConfigure = mConfigurationMap.readValue(key);
// if (!oldConfigure.ok()) {
// ALOGE("Cannot read the old configuration from map: %s",
// oldConfigure.error().message().c_str());
// return Status(oldConfigure.error().code(), oldConfigure.error().message());
// }
// // Write to the configuration map to inform the kernel eBPF program to switch
// // from using one map to the other. Use flag BPF_EXIST here since the map should
// // be already populated in initMaps.
// uint32_t newConfigure = (oldConfigure.value() == SELECT_MAP_A) ? SELECT_MAP_B : SELECT_MAP_A;
// auto res = mConfigurationMap.writeValue(CURRENT_STATS_MAP_CONFIGURATION_KEY, newConfigure,
// BPF_EXIST);
// if (!res.ok()) {
// ALOGE("Failed to toggle the stats map: %s", strerror(res.error().code()));
// return res;
// }
// // After changing the config, we need to make sure all the current running
// // eBPF programs are finished and all the CPUs are aware of this config change
// // before we modify the old map. So we do a special hack here to wait for
// // the kernel to do a synchronize_rcu(). Once the kernel called
// // synchronize_rcu(), the config we just updated will be available to all cores
// // and the next eBPF programs triggered inside the kernel will use the new
// // map configuration. So once this function returns we can safely modify the
// // old stats map without concerning about race between the kernel and
// // userspace.
// int ret = synchronizeKernelRCU();
// if (ret) {
// ALOGE("map swap synchronize_rcu() ended with failure: %s", strerror(-ret));
// return statusFromErrno(-ret, "map swap synchronize_rcu() failed");
// }
return netdutils::status::ok;
}
void TrafficController::setPermissionForUids(int permission, const std::vector<uid_t>& uids) {
std::lock_guard guard(mMutex);
if (permission == INetd::PERMISSION_UNINSTALLED) {
for (uid_t uid : uids) {
// Clean up all permission information for the related uid if all the
// packages related to it are uninstalled.
mPrivilegedUser.erase(uid);
Status ret = mUidPermissionMap.deleteValue(uid);
if (!isOk(ret) && ret.code() != ENOENT) {
ALOGE("Failed to clean up the permission for %u: %s", uid, strerror(ret.code()));
}
}
return;
}
bool privileged = (permission & INetd::PERMISSION_UPDATE_DEVICE_STATS);
for (uid_t uid : uids) {
if (privileged) {
mPrivilegedUser.insert(uid);
} else {
mPrivilegedUser.erase(uid);
}
// The map stores all the permissions that the UID has, except if the only permission
// the UID has is the INTERNET permission, then the UID should not appear in the map.
if (permission != INetd::PERMISSION_INTERNET) {
Status ret = mUidPermissionMap.writeValue(uid, permission, BPF_ANY);
if (!isOk(ret)) {
ALOGE("Failed to set permission: %s of uid(%u) to permission map: %s",
UidPermissionTypeToString(permission).c_str(), uid, strerror(ret.code()));
}
} else {
Status ret = mUidPermissionMap.deleteValue(uid);
if (!isOk(ret) && ret.code() != ENOENT) {
ALOGE("Failed to remove uid %u from permission map: %s", uid, strerror(ret.code()));
}
}
}
}
std::string getProgramStatus(const char *path) {
int ret = access(path, R_OK);
if (ret == 0) {
return StringPrintf("OK");
}
if (ret != 0 && errno == ENOENT) {
return StringPrintf("program is missing at: %s", path);
}
return StringPrintf("check Program %s error: %s", path, strerror(errno));
}
std::string getMapStatus(const base::unique_fd& map_fd, const char* path) {
if (map_fd.get() < 0) {
return StringPrintf("map fd lost");
}
if (access(path, F_OK) != 0) {
return StringPrintf("map not pinned to location: %s", path);
}
return StringPrintf("OK");
}
// NOLINTNEXTLINE(google-runtime-references): grandfathered pass by non-const reference
void dumpBpfMap(const std::string& mapName, DumpWriter& dw, const std::string& header) {
dw.blankline();
dw.println("%s:", mapName.c_str());
if (!header.empty()) {
dw.println(header);
}
}
void TrafficController::dump(int fd, bool verbose) {
std::lock_guard guard(mMutex);
DumpWriter dw(fd);
ScopedIndent indentTop(dw);
dw.println("TrafficController");
ScopedIndent indentPreBpfModule(dw);
dw.blankline();
dw.println("mCookieTagMap status: %s",
getMapStatus(mCookieTagMap.getMap(), COOKIE_TAG_MAP_PATH).c_str());
dw.println("mUidCounterSetMap status: %s",
getMapStatus(mUidCounterSetMap.getMap(), UID_COUNTERSET_MAP_PATH).c_str());
dw.println("mAppUidStatsMap status: %s",
getMapStatus(mAppUidStatsMap.getMap(), APP_UID_STATS_MAP_PATH).c_str());
dw.println("mStatsMapA status: %s",
getMapStatus(mStatsMapA.getMap(), STATS_MAP_A_PATH).c_str());
dw.println("mStatsMapB status: %s",
getMapStatus(mStatsMapB.getMap(), STATS_MAP_B_PATH).c_str());
dw.println("mIfaceIndexNameMap status: %s",
getMapStatus(mIfaceIndexNameMap.getMap(), IFACE_INDEX_NAME_MAP_PATH).c_str());
dw.println("mIfaceStatsMap status: %s",
getMapStatus(mIfaceStatsMap.getMap(), IFACE_STATS_MAP_PATH).c_str());
dw.println("mConfigurationMap status: %s",
getMapStatus(mConfigurationMap.getMap(), CONFIGURATION_MAP_PATH).c_str());
dw.println("mUidOwnerMap status: %s",
getMapStatus(mUidOwnerMap.getMap(), UID_OWNER_MAP_PATH).c_str());
dw.blankline();
dw.println("Cgroup ingress program status: %s",
getProgramStatus(BPF_INGRESS_PROG_PATH).c_str());
dw.println("Cgroup egress program status: %s", getProgramStatus(BPF_EGRESS_PROG_PATH).c_str());
dw.println("xt_bpf ingress program status: %s",
getProgramStatus(XT_BPF_INGRESS_PROG_PATH).c_str());
dw.println("xt_bpf egress program status: %s",
getProgramStatus(XT_BPF_EGRESS_PROG_PATH).c_str());
dw.println("xt_bpf bandwidth allowlist program status: %s",
getProgramStatus(XT_BPF_ALLOWLIST_PROG_PATH).c_str());
dw.println("xt_bpf bandwidth denylist program status: %s",
getProgramStatus(XT_BPF_DENYLIST_PROG_PATH).c_str());
if (!verbose) {
return;
}
dw.blankline();
// dw.println("BPF map content:");
// ScopedIndent indentForMapContent(dw);
// // Print CookieTagMap content.
// dumpBpfMap("mCookieTagMap", dw, "");
// const auto printCookieTagInfo = [&dw](const uint64_t& key, const UidTagValue& value,
// const BpfMap<uint64_t, UidTagValue>&) {
// dw.println("cookie=%" PRIu64 " tag=0x%x uid=%u", key, value.tag, value.uid);
// return base::Result<void>();
// };
// base::Result<void> res = mCookieTagMap.iterateWithValue(printCookieTagInfo);
// if (!res.ok()) {
// dw.println("mCookieTagMap print end with error: %s", res.error().message().c_str());
// }
// // Print UidCounterSetMap content.
// dumpBpfMap("mUidCounterSetMap", dw, "");
// const auto printUidInfo = [&dw](const uint32_t& key, const uint8_t& value,
// const BpfMap<uint32_t, uint8_t>&) {
// dw.println("%u %u", key, value);
// return base::Result<void>();
// };
// res = mUidCounterSetMap.iterateWithValue(printUidInfo);
// if (!res.ok()) {
// dw.println("mUidCounterSetMap print end with error: %s", res.error().message().c_str());
// }
// // Print AppUidStatsMap content.
// std::string appUidStatsHeader = StringPrintf("uid rxBytes rxPackets txBytes txPackets");
// dumpBpfMap("mAppUidStatsMap:", dw, appUidStatsHeader);
// auto printAppUidStatsInfo = [&dw](const uint32_t& key, const StatsValue& value,
// const BpfMap<uint32_t, StatsValue>&) {
// dw.println("%u %" PRIu64 " %" PRIu64 " %" PRIu64 " %" PRIu64, key, value.rxBytes,
// value.rxPackets, value.txBytes, value.txPackets);
// return base::Result<void>();
// };
// res = mAppUidStatsMap.iterateWithValue(printAppUidStatsInfo);
// if (!res.ok()) {
// dw.println("mAppUidStatsMap print end with error: %s", res.error().message().c_str());
// }
// // Print uidStatsMap content.
// std::string statsHeader = StringPrintf("ifaceIndex ifaceName tag_hex uid_int cnt_set rxBytes"
// " rxPackets txBytes txPackets");
// dumpBpfMap("mStatsMapA", dw, statsHeader);
// const auto printStatsInfo = [&dw, this](const StatsKey& key, const StatsValue& value,
// const BpfMap<StatsKey, StatsValue>&) {
// uint32_t ifIndex = key.ifaceIndex;
// auto ifname = mIfaceIndexNameMap.readValue(ifIndex);
// if (!ifname.ok()) {
// ifname = IfaceValue{"unknown"};
// }
// dw.println("%u %s 0x%x %u %u %" PRIu64 " %" PRIu64 " %" PRIu64 " %" PRIu64, ifIndex,
// ifname.value().name, key.tag, key.uid, key.counterSet, value.rxBytes,
// value.rxPackets, value.txBytes, value.txPackets);
// return base::Result<void>();
// };
// res = mStatsMapA.iterateWithValue(printStatsInfo);
// if (!res.ok()) {
// dw.println("mStatsMapA print end with error: %s", res.error().message().c_str());
// }
// // Print TagStatsMap content.
// dumpBpfMap("mStatsMapB", dw, statsHeader);
// res = mStatsMapB.iterateWithValue(printStatsInfo);
// if (!res.ok()) {
// dw.println("mStatsMapB print end with error: %s", res.error().message().c_str());
// }
// // Print ifaceIndexToNameMap content.
// dumpBpfMap("mIfaceIndexNameMap", dw, "");
// const auto printIfaceNameInfo = [&dw](const uint32_t& key, const IfaceValue& value,
// const BpfMap<uint32_t, IfaceValue>&) {
// const char* ifname = value.name;
// dw.println("ifaceIndex=%u ifaceName=%s", key, ifname);
// return base::Result<void>();
// };
// res = mIfaceIndexNameMap.iterateWithValue(printIfaceNameInfo);
// if (!res.ok()) {
// dw.println("mIfaceIndexNameMap print end with error: %s", res.error().message().c_str());
// }
// // Print ifaceStatsMap content
// std::string ifaceStatsHeader = StringPrintf("ifaceIndex ifaceName rxBytes rxPackets txBytes"
// " txPackets");
// dumpBpfMap("mIfaceStatsMap:", dw, ifaceStatsHeader);
// const auto printIfaceStatsInfo = [&dw, this](const uint32_t& key, const StatsValue& value,
// const BpfMap<uint32_t, StatsValue>&) {
// auto ifname = mIfaceIndexNameMap.readValue(key);
// if (!ifname.ok()) {
// ifname = IfaceValue{"unknown"};
// }
// dw.println("%u %s %" PRIu64 " %" PRIu64 " %" PRIu64 " %" PRIu64, key, ifname.value().name,
// value.rxBytes, value.rxPackets, value.txBytes, value.txPackets);
// return base::Result<void>();
// };
// res = mIfaceStatsMap.iterateWithValue(printIfaceStatsInfo);
// if (!res.ok()) {
// dw.println("mIfaceStatsMap print end with error: %s", res.error().message().c_str());
// }
// dw.blankline();
// uint32_t key = UID_RULES_CONFIGURATION_KEY;
// auto configuration = mConfigurationMap.readValue(key);
// if (configuration.ok()) {
// dw.println("current ownerMatch configuration: %d%s", configuration.value(),
// uidMatchTypeToString(configuration.value()).c_str());
// } else {
// dw.println("mConfigurationMap read ownerMatch configure failed with error: %s",
// configuration.error().message().c_str());
// }
// key = CURRENT_STATS_MAP_CONFIGURATION_KEY;
// configuration = mConfigurationMap.readValue(key);
// if (configuration.ok()) {
// const char* statsMapDescription = "???";
// switch (configuration.value()) {
// case SELECT_MAP_A:
// statsMapDescription = "SELECT_MAP_A";
// break;
// case SELECT_MAP_B:
// statsMapDescription = "SELECT_MAP_B";
// break;
// // No default clause, so if we ever add a third map, this code will fail to build.
// }
// dw.println("current statsMap configuration: %d %s", configuration.value(),
// statsMapDescription);
// } else {
// dw.println("mConfigurationMap read stats map configure failed with error: %s",
// configuration.error().message().c_str());
// }
// dumpBpfMap("mUidOwnerMap", dw, "");
// const auto printUidMatchInfo = [&dw, this](const uint32_t& key, const UidOwnerValue& value,
// const BpfMap<uint32_t, UidOwnerValue>&) {
// if (value.rule & IIF_MATCH) {
// auto ifname = mIfaceIndexNameMap.readValue(value.iif);
// if (ifname.ok()) {
// dw.println("%u %s %s", key, uidMatchTypeToString(value.rule).c_str(),
// ifname.value().name);
// } else {
// dw.println("%u %s %u", key, uidMatchTypeToString(value.rule).c_str(), value.iif);
// }
// } else {
// dw.println("%u %s", key, uidMatchTypeToString(value.rule).c_str());
// }
// return base::Result<void>();
// };
// res = mUidOwnerMap.iterateWithValue(printUidMatchInfo);
// if (!res.ok()) {
// dw.println("mUidOwnerMap print end with error: %s", res.error().message().c_str());
// }
// dumpBpfMap("mUidPermissionMap", dw, "");
// const auto printUidPermissionInfo = [&dw](const uint32_t& key, const int& value,
// const BpfMap<uint32_t, uint8_t>&) {
// dw.println("%u %s", key, UidPermissionTypeToString(value).c_str());
// return base::Result<void>();
// };
// res = mUidPermissionMap.iterateWithValue(printUidPermissionInfo);
// if (!res.ok()) {
// dw.println("mUidPermissionMap print end with error: %s", res.error().message().c_str());
// }
// dumpBpfMap("mPrivilegedUser", dw, "");
// for (uid_t uid : mPrivilegedUser) {
// dw.println("%u ALLOW_UPDATE_DEVICE_STATS", (uint32_t)uid);
// }
}
} // namespace net
} // namespace android