packages/modules/Bluetooth/system/stack/a2dp/a2dp_vendor_opus.cc

1333 lines
47 KiB
C++

/*
* Copyright 2021 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
/******************************************************************************
*
* Utility functions to help build and parse the Opus Codec Information
* Element and Media Payload.
*
******************************************************************************/
#define LOG_TAG "a2dp_vendor_opus"
#include "a2dp_vendor_opus.h"
#include <base/logging.h>
#include <string.h>
#include "a2dp_vendor.h"
#include "a2dp_vendor_opus_decoder.h"
#include "a2dp_vendor_opus_encoder.h"
#include "bt_target.h"
#include "bt_utils.h"
#include "btif_av_co.h"
#include "osi/include/log.h"
#include "osi/include/osi.h"
// data type for the Opus Codec Information Element */
// NOTE: bits_per_sample and frameSize for Opus encoder initialization.
typedef struct {
uint32_t vendorId;
uint16_t codecId; /* Codec ID for Opus */
uint8_t sampleRate; /* Sampling Frequency */
uint8_t channelMode; /* STEREO/DUAL/MONO */
btav_a2dp_codec_bits_per_sample_t bits_per_sample;
uint8_t future1; /* codec_specific_1 framesize */
uint8_t future2; /* codec_specific_2 */
uint8_t future3; /* codec_specific_3 */
uint8_t future4; /* codec_specific_4 */
} tA2DP_OPUS_CIE;
/* Opus Source codec capabilities */
static const tA2DP_OPUS_CIE a2dp_opus_source_caps = {
A2DP_OPUS_VENDOR_ID, // vendorId
A2DP_OPUS_CODEC_ID, // codecId
// sampleRate
(A2DP_OPUS_SAMPLING_FREQ_48000),
// channelMode
(A2DP_OPUS_CHANNEL_MODE_STEREO),
// bits_per_sample
(BTAV_A2DP_CODEC_BITS_PER_SAMPLE_16),
// future 1 frameSize
(A2DP_OPUS_20MS_FRAMESIZE),
// future 2
0x00,
// future 3
0x00,
// future 4
0x00};
/* Opus Sink codec capabilities */
static const tA2DP_OPUS_CIE a2dp_opus_sink_caps = {
A2DP_OPUS_VENDOR_ID, // vendorId
A2DP_OPUS_CODEC_ID, // codecId
// sampleRate
(A2DP_OPUS_SAMPLING_FREQ_48000),
// channelMode
(A2DP_OPUS_CHANNEL_MODE_STEREO),
// bits_per_sample
(BTAV_A2DP_CODEC_BITS_PER_SAMPLE_16),
// future 1 frameSize
(A2DP_OPUS_20MS_FRAMESIZE),
// future 2
0x00,
// future 3
0x00,
// future 4
0x00};
/* Default Opus codec configuration */
static const tA2DP_OPUS_CIE a2dp_opus_default_config = {
A2DP_OPUS_VENDOR_ID, // vendorId
A2DP_OPUS_CODEC_ID, // codecId
A2DP_OPUS_SAMPLING_FREQ_48000, // sampleRate
A2DP_OPUS_CHANNEL_MODE_STEREO, // channelMode
BTAV_A2DP_CODEC_BITS_PER_SAMPLE_16, // bits_per_sample
A2DP_OPUS_20MS_FRAMESIZE, // frameSize
0x00, // future 2
0x00, // future 3
0x00 // future 4
};
static const tA2DP_ENCODER_INTERFACE a2dp_encoder_interface_opus = {
a2dp_vendor_opus_encoder_init,
a2dp_vendor_opus_encoder_cleanup,
a2dp_vendor_opus_feeding_reset,
a2dp_vendor_opus_feeding_flush,
a2dp_vendor_opus_get_encoder_interval_ms,
a2dp_vendor_opus_get_effective_frame_size,
a2dp_vendor_opus_send_frames,
a2dp_vendor_opus_set_transmit_queue_length};
static const tA2DP_DECODER_INTERFACE a2dp_decoder_interface_opus = {
a2dp_vendor_opus_decoder_init, a2dp_vendor_opus_decoder_cleanup,
a2dp_vendor_opus_decoder_decode_packet, a2dp_vendor_opus_decoder_start,
a2dp_vendor_opus_decoder_suspend, a2dp_vendor_opus_decoder_configure,
};
UNUSED_ATTR static tA2DP_STATUS A2DP_CodecInfoMatchesCapabilityOpus(
const tA2DP_OPUS_CIE* p_cap, const uint8_t* p_codec_info,
bool is_peer_codec_info);
// Builds the Opus Media Codec Capabilities byte sequence beginning from the
// LOSC octet. |media_type| is the media type |AVDT_MEDIA_TYPE_*|.
// |p_ie| is a pointer to the Opus Codec Information Element information.
// The result is stored in |p_result|. Returns A2DP_SUCCESS on success,
// otherwise the corresponding A2DP error status code.
static tA2DP_STATUS A2DP_BuildInfoOpus(uint8_t media_type,
const tA2DP_OPUS_CIE* p_ie,
uint8_t* p_result) {
if (p_ie == NULL || p_result == NULL) {
LOG_ERROR("invalid information element");
return A2DP_INVALID_PARAMS;
}
*p_result++ = A2DP_OPUS_CODEC_LEN;
*p_result++ = (media_type << 4);
*p_result++ = A2DP_MEDIA_CT_NON_A2DP;
// Vendor ID and Codec ID
*p_result++ = (uint8_t)(p_ie->vendorId & 0x000000FF);
*p_result++ = (uint8_t)((p_ie->vendorId & 0x0000FF00) >> 8);
*p_result++ = (uint8_t)((p_ie->vendorId & 0x00FF0000) >> 16);
*p_result++ = (uint8_t)((p_ie->vendorId & 0xFF000000) >> 24);
*p_result++ = (uint8_t)(p_ie->codecId & 0x00FF);
*p_result++ = (uint8_t)((p_ie->codecId & 0xFF00) >> 8);
*p_result = 0;
*p_result |= (uint8_t)(p_ie->channelMode) & A2DP_OPUS_CHANNEL_MODE_MASK;
if ((*p_result & A2DP_OPUS_CHANNEL_MODE_MASK) == 0) {
LOG_ERROR("channelmode 0x%X setting failed", (p_ie->channelMode));
return A2DP_INVALID_PARAMS;
}
*p_result |= ((uint8_t)(p_ie->future1) & A2DP_OPUS_FRAMESIZE_MASK);
if ((*p_result & A2DP_OPUS_FRAMESIZE_MASK) == 0) {
LOG_ERROR("frameSize 0x%X setting failed", (p_ie->future1));
return A2DP_INVALID_PARAMS;
}
*p_result |= ((uint8_t)(p_ie->sampleRate) & A2DP_OPUS_SAMPLING_FREQ_MASK);
if ((*p_result & A2DP_OPUS_SAMPLING_FREQ_MASK) == 0) {
LOG_ERROR("samplerate 0x%X setting failed", (p_ie->sampleRate));
return A2DP_INVALID_PARAMS;
}
p_result++;
return A2DP_SUCCESS;
}
// Parses the Opus Media Codec Capabilities byte sequence beginning from the
// LOSC octet. The result is stored in |p_ie|. The byte sequence to parse is
// |p_codec_info|. If |is_capability| is true, the byte sequence is
// codec capabilities, otherwise is codec configuration.
// Returns A2DP_SUCCESS on success, otherwise the corresponding A2DP error
// status code.
static tA2DP_STATUS A2DP_ParseInfoOpus(tA2DP_OPUS_CIE* p_ie,
const uint8_t* p_codec_info,
bool is_capability) {
uint8_t losc;
uint8_t media_type;
tA2DP_CODEC_TYPE codec_type;
if (p_ie == NULL || p_codec_info == NULL) {
LOG_ERROR("unable to parse information element");
return A2DP_INVALID_PARAMS;
}
// Check the codec capability length
losc = *p_codec_info++;
if (losc != A2DP_OPUS_CODEC_LEN) {
LOG_ERROR("invalid codec ie length %d", losc);
return A2DP_WRONG_CODEC;
}
media_type = (*p_codec_info++) >> 4;
codec_type = *p_codec_info++;
/* Check the Media Type and Media Codec Type */
if (media_type != AVDT_MEDIA_TYPE_AUDIO ||
codec_type != A2DP_MEDIA_CT_NON_A2DP) {
LOG_ERROR("invalid codec");
return A2DP_WRONG_CODEC;
}
// Check the Vendor ID and Codec ID */
p_ie->vendorId = (*p_codec_info & 0x000000FF) |
(*(p_codec_info + 1) << 8 & 0x0000FF00) |
(*(p_codec_info + 2) << 16 & 0x00FF0000) |
(*(p_codec_info + 3) << 24 & 0xFF000000);
p_codec_info += 4;
p_ie->codecId =
(*p_codec_info & 0x00FF) | (*(p_codec_info + 1) << 8 & 0xFF00);
p_codec_info += 2;
if (p_ie->vendorId != A2DP_OPUS_VENDOR_ID ||
p_ie->codecId != A2DP_OPUS_CODEC_ID) {
LOG_ERROR("wrong vendor or codec id");
return A2DP_WRONG_CODEC;
}
p_ie->channelMode = *p_codec_info & A2DP_OPUS_CHANNEL_MODE_MASK;
p_ie->future1 = *p_codec_info & A2DP_OPUS_FRAMESIZE_MASK;
p_ie->sampleRate = *p_codec_info & A2DP_OPUS_SAMPLING_FREQ_MASK;
p_ie->bits_per_sample = BTAV_A2DP_CODEC_BITS_PER_SAMPLE_16;
if (is_capability) {
// NOTE: The checks here are very liberal. We should be using more
// pedantic checks specific to the SRC or SNK as specified in the spec.
if (A2DP_BitsSet(p_ie->sampleRate) == A2DP_SET_ZERO_BIT) {
LOG_ERROR("invalid sample rate 0x%X", p_ie->sampleRate);
return A2DP_BAD_SAMP_FREQ;
}
if (A2DP_BitsSet(p_ie->channelMode) == A2DP_SET_ZERO_BIT) {
LOG_ERROR("invalid channel mode");
return A2DP_BAD_CH_MODE;
}
return A2DP_SUCCESS;
}
if (A2DP_BitsSet(p_ie->sampleRate) != A2DP_SET_ONE_BIT) {
LOG_ERROR("invalid sampling frequency 0x%X", p_ie->sampleRate);
return A2DP_BAD_SAMP_FREQ;
}
if (A2DP_BitsSet(p_ie->channelMode) != A2DP_SET_ONE_BIT) {
LOG_ERROR("invalid channel mode.");
return A2DP_BAD_CH_MODE;
}
return A2DP_SUCCESS;
}
// Build the Opus Media Payload Header.
// |p_dst| points to the location where the header should be written to.
// If |frag| is true, the media payload frame is fragmented.
// |start| is true for the first packet of a fragmented frame.
// |last| is true for the last packet of a fragmented frame.
// If |frag| is false, |num| is the number of number of frames in the packet,
// otherwise is the number of remaining fragments (including this one).
static void A2DP_BuildMediaPayloadHeaderOpus(uint8_t* p_dst, bool frag,
bool start, bool last,
uint8_t num) {
if (p_dst == NULL) return;
*p_dst = 0;
if (frag) *p_dst |= A2DP_OPUS_HDR_F_MSK;
if (start) *p_dst |= A2DP_OPUS_HDR_S_MSK;
if (last) *p_dst |= A2DP_OPUS_HDR_L_MSK;
*p_dst |= (A2DP_OPUS_HDR_NUM_MSK & num);
}
bool A2DP_IsVendorSourceCodecValidOpus(const uint8_t* p_codec_info) {
tA2DP_OPUS_CIE cfg_cie;
/* Use a liberal check when parsing the codec info */
return (A2DP_ParseInfoOpus(&cfg_cie, p_codec_info, false) == A2DP_SUCCESS) ||
(A2DP_ParseInfoOpus(&cfg_cie, p_codec_info, true) == A2DP_SUCCESS);
}
bool A2DP_IsVendorSinkCodecValidOpus(const uint8_t* p_codec_info) {
tA2DP_OPUS_CIE cfg_cie;
/* Use a liberal check when parsing the codec info */
return (A2DP_ParseInfoOpus(&cfg_cie, p_codec_info, false) == A2DP_SUCCESS) ||
(A2DP_ParseInfoOpus(&cfg_cie, p_codec_info, true) == A2DP_SUCCESS);
}
bool A2DP_IsVendorPeerSourceCodecValidOpus(const uint8_t* p_codec_info) {
tA2DP_OPUS_CIE cfg_cie;
/* Use a liberal check when parsing the codec info */
return (A2DP_ParseInfoOpus(&cfg_cie, p_codec_info, false) == A2DP_SUCCESS) ||
(A2DP_ParseInfoOpus(&cfg_cie, p_codec_info, true) == A2DP_SUCCESS);
}
bool A2DP_IsVendorPeerSinkCodecValidOpus(const uint8_t* p_codec_info) {
tA2DP_OPUS_CIE cfg_cie;
/* Use a liberal check when parsing the codec info */
return (A2DP_ParseInfoOpus(&cfg_cie, p_codec_info, false) == A2DP_SUCCESS) ||
(A2DP_ParseInfoOpus(&cfg_cie, p_codec_info, true) == A2DP_SUCCESS);
}
bool A2DP_IsVendorSinkCodecSupportedOpus(const uint8_t* p_codec_info) {
return A2DP_CodecInfoMatchesCapabilityOpus(&a2dp_opus_sink_caps, p_codec_info,
false) == A2DP_SUCCESS;
}
bool A2DP_IsPeerSourceCodecSupportedOpus(const uint8_t* p_codec_info) {
return A2DP_CodecInfoMatchesCapabilityOpus(&a2dp_opus_sink_caps, p_codec_info,
true) == A2DP_SUCCESS;
}
// Checks whether A2DP Opus codec configuration matches with a device's codec
// capabilities. |p_cap| is the Opus codec configuration. |p_codec_info| is
// the device's codec capabilities.
// If |is_capability| is true, the byte sequence is codec capabilities,
// otherwise is codec configuration.
// |p_codec_info| contains the codec capabilities for a peer device that
// is acting as an A2DP source.
// Returns A2DP_SUCCESS if the codec configuration matches with capabilities,
// otherwise the corresponding A2DP error status code.
static tA2DP_STATUS A2DP_CodecInfoMatchesCapabilityOpus(
const tA2DP_OPUS_CIE* p_cap, const uint8_t* p_codec_info,
bool is_capability) {
tA2DP_STATUS status;
tA2DP_OPUS_CIE cfg_cie;
/* parse configuration */
status = A2DP_ParseInfoOpus(&cfg_cie, p_codec_info, is_capability);
if (status != A2DP_SUCCESS) {
LOG_ERROR("parsing failed %d", status);
return status;
}
/* verify that each parameter is in range */
LOG_VERBOSE("SAMPLING FREQ peer: 0x%x, capability 0x%x", cfg_cie.sampleRate,
p_cap->sampleRate);
LOG_VERBOSE("CH_MODE peer: 0x%x, capability 0x%x", cfg_cie.channelMode,
p_cap->channelMode);
LOG_VERBOSE("FRAMESIZE peer: 0x%x, capability 0x%x", cfg_cie.future1,
p_cap->future1);
/* sampling frequency */
if ((cfg_cie.sampleRate & p_cap->sampleRate) == 0) return A2DP_NS_SAMP_FREQ;
/* channel mode */
if ((cfg_cie.channelMode & p_cap->channelMode) == 0) return A2DP_NS_CH_MODE;
/* frameSize */
if ((cfg_cie.future1 & p_cap->future1) == 0) return A2DP_NS_FRAMESIZE;
return A2DP_SUCCESS;
}
bool A2DP_VendorUsesRtpHeaderOpus(UNUSED_ATTR bool content_protection_enabled,
UNUSED_ATTR const uint8_t* p_codec_info) {
return true;
}
const char* A2DP_VendorCodecNameOpus(UNUSED_ATTR const uint8_t* p_codec_info) {
return "Opus";
}
bool A2DP_VendorCodecTypeEqualsOpus(const uint8_t* p_codec_info_a,
const uint8_t* p_codec_info_b) {
tA2DP_OPUS_CIE Opus_cie_a;
tA2DP_OPUS_CIE Opus_cie_b;
// Check whether the codec info contains valid data
tA2DP_STATUS a2dp_status =
A2DP_ParseInfoOpus(&Opus_cie_a, p_codec_info_a, true);
if (a2dp_status != A2DP_SUCCESS) {
LOG_ERROR("cannot decode codec information: %d", a2dp_status);
return false;
}
a2dp_status = A2DP_ParseInfoOpus(&Opus_cie_b, p_codec_info_b, true);
if (a2dp_status != A2DP_SUCCESS) {
LOG_ERROR("cannot decode codec information: %d", a2dp_status);
return false;
}
return true;
}
bool A2DP_VendorCodecEqualsOpus(const uint8_t* p_codec_info_a,
const uint8_t* p_codec_info_b) {
tA2DP_OPUS_CIE Opus_cie_a;
tA2DP_OPUS_CIE Opus_cie_b;
// Check whether the codec info contains valid data
tA2DP_STATUS a2dp_status =
A2DP_ParseInfoOpus(&Opus_cie_a, p_codec_info_a, true);
if (a2dp_status != A2DP_SUCCESS) {
LOG_ERROR("cannot decode codec information: %d", a2dp_status);
return false;
}
a2dp_status = A2DP_ParseInfoOpus(&Opus_cie_b, p_codec_info_b, true);
if (a2dp_status != A2DP_SUCCESS) {
LOG_ERROR("cannot decode codec information: %d", a2dp_status);
return false;
}
return (Opus_cie_a.sampleRate == Opus_cie_b.sampleRate) &&
(Opus_cie_a.channelMode == Opus_cie_b.channelMode) &&
(Opus_cie_a.future1 == Opus_cie_b.future1);
}
int A2DP_VendorGetBitRateOpus(const uint8_t* p_codec_info) {
int channel_count = A2DP_VendorGetTrackChannelCountOpus(p_codec_info);
int framesize = A2DP_VendorGetFrameSizeOpus(p_codec_info);
int samplerate = A2DP_VendorGetTrackSampleRateOpus(p_codec_info);
// in milliseconds
switch ((framesize * 1000) / samplerate) {
case 20:
if (channel_count == 2) {
return 256000;
} else if (channel_count == 1) {
return 128000;
} else
return -1;
default:
return -1;
}
}
int A2DP_VendorGetTrackSampleRateOpus(const uint8_t* p_codec_info) {
tA2DP_OPUS_CIE Opus_cie;
// Check whether the codec info contains valid data
tA2DP_STATUS a2dp_status = A2DP_ParseInfoOpus(&Opus_cie, p_codec_info, false);
if (a2dp_status != A2DP_SUCCESS) {
LOG_ERROR("cannot decode codec information: %d", a2dp_status);
return -1;
}
switch (Opus_cie.sampleRate) {
case A2DP_OPUS_SAMPLING_FREQ_48000:
return 48000;
}
return -1;
}
int A2DP_VendorGetTrackBitsPerSampleOpus(const uint8_t* p_codec_info) {
tA2DP_OPUS_CIE Opus_cie;
// Check whether the codec info contains valid data
tA2DP_STATUS a2dp_status = A2DP_ParseInfoOpus(&Opus_cie, p_codec_info, false);
if (a2dp_status != A2DP_SUCCESS) {
LOG_ERROR("cannot decode codec information: %d", a2dp_status);
return -1;
}
switch (Opus_cie.bits_per_sample) {
case BTAV_A2DP_CODEC_BITS_PER_SAMPLE_16:
return 16;
case BTAV_A2DP_CODEC_BITS_PER_SAMPLE_24:
return 24;
case BTAV_A2DP_CODEC_BITS_PER_SAMPLE_32:
return 32;
case BTAV_A2DP_CODEC_BITS_PER_SAMPLE_NONE:
default:
LOG_ERROR("Invalid bit depth setting");
return -1;
}
}
int A2DP_VendorGetTrackChannelCountOpus(const uint8_t* p_codec_info) {
tA2DP_OPUS_CIE Opus_cie;
// Check whether the codec info contains valid data
tA2DP_STATUS a2dp_status = A2DP_ParseInfoOpus(&Opus_cie, p_codec_info, false);
if (a2dp_status != A2DP_SUCCESS) {
LOG_ERROR("cannot decode codec information: %d", a2dp_status);
return -1;
}
switch (Opus_cie.channelMode) {
case A2DP_OPUS_CHANNEL_MODE_MONO:
return 1;
case A2DP_OPUS_CHANNEL_MODE_STEREO:
case A2DP_OPUS_CHANNEL_MODE_DUAL_MONO:
return 2;
default:
LOG_ERROR("Invalid channel setting");
}
return -1;
}
int A2DP_VendorGetSinkTrackChannelTypeOpus(const uint8_t* p_codec_info) {
tA2DP_OPUS_CIE Opus_cie;
// Check whether the codec info contains valid data
tA2DP_STATUS a2dp_status = A2DP_ParseInfoOpus(&Opus_cie, p_codec_info, false);
if (a2dp_status != A2DP_SUCCESS) {
LOG_ERROR("cannot decode codec information: %d", a2dp_status);
return -1;
}
switch (Opus_cie.channelMode) {
case A2DP_OPUS_CHANNEL_MODE_MONO:
return 1;
case A2DP_OPUS_CHANNEL_MODE_STEREO:
return 2;
}
return -1;
}
int A2DP_VendorGetChannelModeCodeOpus(const uint8_t* p_codec_info) {
tA2DP_OPUS_CIE Opus_cie;
// Check whether the codec info contains valid data
tA2DP_STATUS a2dp_status = A2DP_ParseInfoOpus(&Opus_cie, p_codec_info, false);
if (a2dp_status != A2DP_SUCCESS) {
LOG_ERROR("cannot decode codec information: %d", a2dp_status);
return -1;
}
switch (Opus_cie.channelMode) {
case A2DP_OPUS_CHANNEL_MODE_MONO:
case A2DP_OPUS_CHANNEL_MODE_STEREO:
return Opus_cie.channelMode;
default:
break;
}
return -1;
}
int A2DP_VendorGetFrameSizeOpus(const uint8_t* p_codec_info) {
tA2DP_OPUS_CIE Opus_cie;
// Check whether the codec info contains valid data
tA2DP_STATUS a2dp_status = A2DP_ParseInfoOpus(&Opus_cie, p_codec_info, false);
if (a2dp_status != A2DP_SUCCESS) {
LOG_ERROR("cannot decode codec information: %d", a2dp_status);
return -1;
}
int samplerate = A2DP_VendorGetTrackSampleRateOpus(p_codec_info);
switch (Opus_cie.future1) {
case A2DP_OPUS_20MS_FRAMESIZE:
if (samplerate == 48000) {
return 960;
}
}
return -1;
}
bool A2DP_VendorGetPacketTimestampOpus(UNUSED_ATTR const uint8_t* p_codec_info,
const uint8_t* p_data,
uint32_t* p_timestamp) {
*p_timestamp = *(const uint32_t*)p_data;
return true;
}
bool A2DP_VendorBuildCodecHeaderOpus(UNUSED_ATTR const uint8_t* p_codec_info,
BT_HDR* p_buf,
uint16_t frames_per_packet) {
uint8_t* p;
p_buf->offset -= A2DP_OPUS_MPL_HDR_LEN;
p = (uint8_t*)(p_buf + 1) + p_buf->offset;
p_buf->len += A2DP_OPUS_MPL_HDR_LEN;
A2DP_BuildMediaPayloadHeaderOpus(p, false, false, false,
(uint8_t)frames_per_packet);
return true;
}
std::string A2DP_VendorCodecInfoStringOpus(const uint8_t* p_codec_info) {
std::stringstream res;
std::string field;
tA2DP_STATUS a2dp_status;
tA2DP_OPUS_CIE Opus_cie;
a2dp_status = A2DP_ParseInfoOpus(&Opus_cie, p_codec_info, true);
if (a2dp_status != A2DP_SUCCESS) {
res << "A2DP_ParseInfoOpus fail: " << loghex(a2dp_status);
return res.str();
}
res << "\tname: Opus\n";
// Sample frequency
field.clear();
AppendField(&field, (Opus_cie.sampleRate == 0), "NONE");
AppendField(&field, (Opus_cie.sampleRate & A2DP_OPUS_SAMPLING_FREQ_48000),
"48000");
res << "\tsamp_freq: " << field << " (" << loghex(Opus_cie.sampleRate)
<< ")\n";
// Channel mode
field.clear();
AppendField(&field, (Opus_cie.channelMode == 0), "NONE");
AppendField(&field, (Opus_cie.channelMode & A2DP_OPUS_CHANNEL_MODE_MONO),
"Mono");
AppendField(&field, (Opus_cie.channelMode & A2DP_OPUS_CHANNEL_MODE_STEREO),
"Stereo");
res << "\tch_mode: " << field << " (" << loghex(Opus_cie.channelMode)
<< ")\n";
// Framesize
field.clear();
AppendField(&field, (Opus_cie.future1 == 0), "NONE");
AppendField(&field, (Opus_cie.future1 & A2DP_OPUS_20MS_FRAMESIZE), "20ms");
AppendField(&field, (Opus_cie.future1 & A2DP_OPUS_10MS_FRAMESIZE), "10ms");
res << "\tframesize: " << field << " (" << loghex(Opus_cie.future1) << ")\n";
return res.str();
}
const tA2DP_ENCODER_INTERFACE* A2DP_VendorGetEncoderInterfaceOpus(
const uint8_t* p_codec_info) {
if (!A2DP_IsVendorSourceCodecValidOpus(p_codec_info)) return NULL;
return &a2dp_encoder_interface_opus;
}
const tA2DP_DECODER_INTERFACE* A2DP_VendorGetDecoderInterfaceOpus(
const uint8_t* p_codec_info) {
if (!A2DP_IsVendorSinkCodecValidOpus(p_codec_info)) return NULL;
return &a2dp_decoder_interface_opus;
}
bool A2DP_VendorAdjustCodecOpus(uint8_t* p_codec_info) {
tA2DP_OPUS_CIE cfg_cie;
// Nothing to do: just verify the codec info is valid
if (A2DP_ParseInfoOpus(&cfg_cie, p_codec_info, true) != A2DP_SUCCESS)
return false;
return true;
}
btav_a2dp_codec_index_t A2DP_VendorSourceCodecIndexOpus(
UNUSED_ATTR const uint8_t* p_codec_info) {
return BTAV_A2DP_CODEC_INDEX_SOURCE_OPUS;
}
btav_a2dp_codec_index_t A2DP_VendorSinkCodecIndexOpus(
UNUSED_ATTR const uint8_t* p_codec_info) {
return BTAV_A2DP_CODEC_INDEX_SINK_OPUS;
}
const char* A2DP_VendorCodecIndexStrOpus(void) { return "Opus"; }
const char* A2DP_VendorCodecIndexStrOpusSink(void) { return "Opus SINK"; }
bool A2DP_VendorInitCodecConfigOpus(AvdtpSepConfig* p_cfg) {
if (A2DP_BuildInfoOpus(AVDT_MEDIA_TYPE_AUDIO, &a2dp_opus_source_caps,
p_cfg->codec_info) != A2DP_SUCCESS) {
return false;
}
#if (BTA_AV_CO_CP_SCMS_T == TRUE)
/* Content protection info - support SCMS-T */
uint8_t* p = p_cfg->protect_info;
*p++ = AVDT_CP_LOSC;
UINT16_TO_STREAM(p, AVDT_CP_SCMS_T_ID);
p_cfg->num_protect = 1;
#endif
return true;
}
bool A2DP_VendorInitCodecConfigOpusSink(AvdtpSepConfig* p_cfg) {
return A2DP_BuildInfoOpus(AVDT_MEDIA_TYPE_AUDIO, &a2dp_opus_sink_caps,
p_cfg->codec_info) == A2DP_SUCCESS;
}
UNUSED_ATTR static void build_codec_config(const tA2DP_OPUS_CIE& config_cie,
btav_a2dp_codec_config_t* result) {
if (config_cie.sampleRate & A2DP_OPUS_SAMPLING_FREQ_48000)
result->sample_rate |= BTAV_A2DP_CODEC_SAMPLE_RATE_48000;
result->bits_per_sample = config_cie.bits_per_sample;
if (config_cie.channelMode & A2DP_OPUS_CHANNEL_MODE_MONO)
result->channel_mode |= BTAV_A2DP_CODEC_CHANNEL_MODE_MONO;
if (config_cie.channelMode & A2DP_OPUS_CHANNEL_MODE_STEREO) {
result->channel_mode |= BTAV_A2DP_CODEC_CHANNEL_MODE_STEREO;
}
if (config_cie.future1 & A2DP_OPUS_20MS_FRAMESIZE)
result->codec_specific_1 |= BTAV_A2DP_CODEC_FRAME_SIZE_20MS;
if (config_cie.future1 & A2DP_OPUS_10MS_FRAMESIZE)
result->codec_specific_1 |= BTAV_A2DP_CODEC_FRAME_SIZE_10MS;
}
A2dpCodecConfigOpusSource::A2dpCodecConfigOpusSource(
btav_a2dp_codec_priority_t codec_priority)
: A2dpCodecConfigOpusBase(BTAV_A2DP_CODEC_INDEX_SOURCE_OPUS,
A2DP_VendorCodecIndexStrOpus(), codec_priority,
true) {
// Compute the local capability
if (a2dp_opus_source_caps.sampleRate & A2DP_OPUS_SAMPLING_FREQ_48000) {
codec_local_capability_.sample_rate |= BTAV_A2DP_CODEC_SAMPLE_RATE_48000;
}
codec_local_capability_.bits_per_sample =
a2dp_opus_source_caps.bits_per_sample;
if (a2dp_opus_source_caps.channelMode & A2DP_OPUS_CHANNEL_MODE_MONO) {
codec_local_capability_.channel_mode |= BTAV_A2DP_CODEC_CHANNEL_MODE_MONO;
}
if (a2dp_opus_source_caps.channelMode & A2DP_OPUS_CHANNEL_MODE_STEREO) {
codec_local_capability_.channel_mode |= BTAV_A2DP_CODEC_CHANNEL_MODE_STEREO;
}
}
A2dpCodecConfigOpusSource::~A2dpCodecConfigOpusSource() {}
bool A2dpCodecConfigOpusSource::init() {
if (!isValid()) return false;
return true;
}
bool A2dpCodecConfigOpusSource::useRtpHeaderMarkerBit() const { return false; }
//
// Selects the best sample rate from |sampleRate|.
// The result is stored in |p_result| and |p_codec_config|.
// Returns true if a selection was made, otherwise false.
//
static bool select_best_sample_rate(uint8_t sampleRate,
tA2DP_OPUS_CIE* p_result,
btav_a2dp_codec_config_t* p_codec_config) {
if (sampleRate & A2DP_OPUS_SAMPLING_FREQ_48000) {
p_result->sampleRate = A2DP_OPUS_SAMPLING_FREQ_48000;
p_codec_config->sample_rate = BTAV_A2DP_CODEC_SAMPLE_RATE_48000;
return true;
}
return false;
}
//
// Selects the audio sample rate from |p_codec_audio_config|.
// |sampleRate| contains the capability.
// The result is stored in |p_result| and |p_codec_config|.
// Returns true if a selection was made, otherwise false.
//
static bool select_audio_sample_rate(
const btav_a2dp_codec_config_t* p_codec_audio_config, uint8_t sampleRate,
tA2DP_OPUS_CIE* p_result, btav_a2dp_codec_config_t* p_codec_config) {
switch (p_codec_audio_config->sample_rate) {
case BTAV_A2DP_CODEC_SAMPLE_RATE_48000:
if (sampleRate & A2DP_OPUS_SAMPLING_FREQ_48000) {
p_result->sampleRate = A2DP_OPUS_SAMPLING_FREQ_48000;
p_codec_config->sample_rate = BTAV_A2DP_CODEC_SAMPLE_RATE_48000;
return true;
}
break;
case BTAV_A2DP_CODEC_SAMPLE_RATE_16000:
case BTAV_A2DP_CODEC_SAMPLE_RATE_24000:
case BTAV_A2DP_CODEC_SAMPLE_RATE_44100:
case BTAV_A2DP_CODEC_SAMPLE_RATE_88200:
case BTAV_A2DP_CODEC_SAMPLE_RATE_96000:
case BTAV_A2DP_CODEC_SAMPLE_RATE_176400:
case BTAV_A2DP_CODEC_SAMPLE_RATE_192000:
case BTAV_A2DP_CODEC_SAMPLE_RATE_NONE:
break;
}
return false;
}
//
// Selects the best bits per sample from |bits_per_sample|.
// |bits_per_sample| contains the capability.
// The result is stored in |p_result| and |p_codec_config|.
// Returns true if a selection was made, otherwise false.
//
static bool select_best_bits_per_sample(
btav_a2dp_codec_bits_per_sample_t bits_per_sample, tA2DP_OPUS_CIE* p_result,
btav_a2dp_codec_config_t* p_codec_config) {
if (bits_per_sample & BTAV_A2DP_CODEC_BITS_PER_SAMPLE_32) {
p_codec_config->bits_per_sample = BTAV_A2DP_CODEC_BITS_PER_SAMPLE_32;
p_result->bits_per_sample = BTAV_A2DP_CODEC_BITS_PER_SAMPLE_32;
return true;
}
if (bits_per_sample & BTAV_A2DP_CODEC_BITS_PER_SAMPLE_24) {
p_codec_config->bits_per_sample = BTAV_A2DP_CODEC_BITS_PER_SAMPLE_24;
p_result->bits_per_sample = BTAV_A2DP_CODEC_BITS_PER_SAMPLE_24;
return true;
}
if (bits_per_sample & BTAV_A2DP_CODEC_BITS_PER_SAMPLE_16) {
p_codec_config->bits_per_sample = BTAV_A2DP_CODEC_BITS_PER_SAMPLE_16;
p_result->bits_per_sample = BTAV_A2DP_CODEC_BITS_PER_SAMPLE_16;
return true;
}
return false;
}
//
// Selects the audio bits per sample from |p_codec_audio_config|.
// |bits_per_sample| contains the capability.
// The result is stored in |p_result| and |p_codec_config|.
// Returns true if a selection was made, otherwise false.
//
static bool select_audio_bits_per_sample(
const btav_a2dp_codec_config_t* p_codec_audio_config,
btav_a2dp_codec_bits_per_sample_t bits_per_sample, tA2DP_OPUS_CIE* p_result,
btav_a2dp_codec_config_t* p_codec_config) {
switch (p_codec_audio_config->bits_per_sample) {
case BTAV_A2DP_CODEC_BITS_PER_SAMPLE_16:
if (bits_per_sample & BTAV_A2DP_CODEC_BITS_PER_SAMPLE_16) {
p_codec_config->bits_per_sample = BTAV_A2DP_CODEC_BITS_PER_SAMPLE_16;
p_result->bits_per_sample = BTAV_A2DP_CODEC_BITS_PER_SAMPLE_16;
return true;
}
break;
case BTAV_A2DP_CODEC_BITS_PER_SAMPLE_24:
if (bits_per_sample & BTAV_A2DP_CODEC_BITS_PER_SAMPLE_24) {
p_codec_config->bits_per_sample = BTAV_A2DP_CODEC_BITS_PER_SAMPLE_24;
p_result->bits_per_sample = BTAV_A2DP_CODEC_BITS_PER_SAMPLE_24;
return true;
}
break;
case BTAV_A2DP_CODEC_BITS_PER_SAMPLE_32:
if (bits_per_sample & BTAV_A2DP_CODEC_BITS_PER_SAMPLE_32) {
p_codec_config->bits_per_sample = BTAV_A2DP_CODEC_BITS_PER_SAMPLE_32;
p_result->bits_per_sample = BTAV_A2DP_CODEC_BITS_PER_SAMPLE_32;
return true;
}
break;
case BTAV_A2DP_CODEC_BITS_PER_SAMPLE_NONE:
break;
}
return false;
}
//
// Selects the best channel mode from |channelMode|.
// The result is stored in |p_result| and |p_codec_config|.
// Returns true if a selection was made, otherwise false.
//
static bool select_best_channel_mode(uint8_t channelMode,
tA2DP_OPUS_CIE* p_result,
btav_a2dp_codec_config_t* p_codec_config) {
if (channelMode & A2DP_OPUS_CHANNEL_MODE_STEREO) {
p_result->channelMode = A2DP_OPUS_CHANNEL_MODE_STEREO;
p_codec_config->channel_mode = BTAV_A2DP_CODEC_CHANNEL_MODE_STEREO;
return true;
}
if (channelMode & A2DP_OPUS_CHANNEL_MODE_MONO) {
p_result->channelMode = A2DP_OPUS_CHANNEL_MODE_MONO;
p_codec_config->channel_mode = BTAV_A2DP_CODEC_CHANNEL_MODE_MONO;
return true;
}
return false;
}
//
// Selects the audio channel mode from |p_codec_audio_config|.
// |channelMode| contains the capability.
// The result is stored in |p_result| and |p_codec_config|.
// Returns true if a selection was made, otherwise false.
//
static bool select_audio_channel_mode(
const btav_a2dp_codec_config_t* p_codec_audio_config, uint8_t channelMode,
tA2DP_OPUS_CIE* p_result, btav_a2dp_codec_config_t* p_codec_config) {
switch (p_codec_audio_config->channel_mode) {
case BTAV_A2DP_CODEC_CHANNEL_MODE_MONO:
if (channelMode & A2DP_OPUS_CHANNEL_MODE_MONO) {
p_result->channelMode = A2DP_OPUS_CHANNEL_MODE_MONO;
p_codec_config->channel_mode = BTAV_A2DP_CODEC_CHANNEL_MODE_MONO;
return true;
}
break;
case BTAV_A2DP_CODEC_CHANNEL_MODE_STEREO:
if (channelMode & A2DP_OPUS_CHANNEL_MODE_STEREO) {
p_result->channelMode = A2DP_OPUS_CHANNEL_MODE_STEREO;
p_codec_config->channel_mode = BTAV_A2DP_CODEC_CHANNEL_MODE_STEREO;
return true;
}
break;
case BTAV_A2DP_CODEC_CHANNEL_MODE_NONE:
break;
}
return false;
}
bool A2dpCodecConfigOpusBase::setCodecConfig(const uint8_t* p_peer_codec_info,
bool is_capability,
uint8_t* p_result_codec_config) {
std::lock_guard<std::recursive_mutex> lock(codec_mutex_);
tA2DP_OPUS_CIE peer_info_cie;
tA2DP_OPUS_CIE result_config_cie;
uint8_t channelMode;
uint8_t sampleRate;
uint8_t frameSize;
btav_a2dp_codec_bits_per_sample_t bits_per_sample;
const tA2DP_OPUS_CIE* p_a2dp_opus_caps =
(is_source_) ? &a2dp_opus_source_caps : &a2dp_opus_sink_caps;
btav_a2dp_codec_config_t device_codec_config_ = getCodecConfig();
LOG_INFO(
"AudioManager stream config %d sample rate %d bit depth %d channel "
"mode",
device_codec_config_.sample_rate, device_codec_config_.bits_per_sample,
device_codec_config_.channel_mode);
// Save the internal state
btav_a2dp_codec_config_t saved_codec_config = codec_config_;
btav_a2dp_codec_config_t saved_codec_capability = codec_capability_;
btav_a2dp_codec_config_t saved_codec_selectable_capability =
codec_selectable_capability_;
btav_a2dp_codec_config_t saved_codec_user_config = codec_user_config_;
btav_a2dp_codec_config_t saved_codec_audio_config = codec_audio_config_;
uint8_t saved_ota_codec_config[AVDT_CODEC_SIZE];
uint8_t saved_ota_codec_peer_capability[AVDT_CODEC_SIZE];
uint8_t saved_ota_codec_peer_config[AVDT_CODEC_SIZE];
memcpy(saved_ota_codec_config, ota_codec_config_, sizeof(ota_codec_config_));
memcpy(saved_ota_codec_peer_capability, ota_codec_peer_capability_,
sizeof(ota_codec_peer_capability_));
memcpy(saved_ota_codec_peer_config, ota_codec_peer_config_,
sizeof(ota_codec_peer_config_));
tA2DP_STATUS status =
A2DP_ParseInfoOpus(&peer_info_cie, p_peer_codec_info, is_capability);
if (status != A2DP_SUCCESS) {
LOG_ERROR("can't parse peer's capabilities: error = %d", status);
goto fail;
}
//
// Build the preferred configuration
//
memset(&result_config_cie, 0, sizeof(result_config_cie));
result_config_cie.vendorId = p_a2dp_opus_caps->vendorId;
result_config_cie.codecId = p_a2dp_opus_caps->codecId;
//
// Select the sample frequency
//
sampleRate = p_a2dp_opus_caps->sampleRate & peer_info_cie.sampleRate;
codec_config_.sample_rate = BTAV_A2DP_CODEC_SAMPLE_RATE_NONE;
switch (codec_user_config_.sample_rate) {
case BTAV_A2DP_CODEC_SAMPLE_RATE_48000:
if (sampleRate & A2DP_OPUS_SAMPLING_FREQ_48000) {
result_config_cie.sampleRate = A2DP_OPUS_SAMPLING_FREQ_48000;
codec_capability_.sample_rate = codec_user_config_.sample_rate;
codec_config_.sample_rate = codec_user_config_.sample_rate;
}
break;
case BTAV_A2DP_CODEC_SAMPLE_RATE_44100:
case BTAV_A2DP_CODEC_SAMPLE_RATE_88200:
case BTAV_A2DP_CODEC_SAMPLE_RATE_96000:
case BTAV_A2DP_CODEC_SAMPLE_RATE_176400:
case BTAV_A2DP_CODEC_SAMPLE_RATE_192000:
case BTAV_A2DP_CODEC_SAMPLE_RATE_16000:
case BTAV_A2DP_CODEC_SAMPLE_RATE_24000:
case BTAV_A2DP_CODEC_SAMPLE_RATE_NONE:
codec_capability_.sample_rate = BTAV_A2DP_CODEC_SAMPLE_RATE_NONE;
codec_config_.sample_rate = BTAV_A2DP_CODEC_SAMPLE_RATE_NONE;
break;
}
// Select the sample frequency if there is no user preference
do {
// Compute the selectable capability
if (sampleRate & A2DP_OPUS_SAMPLING_FREQ_48000) {
codec_selectable_capability_.sample_rate |=
BTAV_A2DP_CODEC_SAMPLE_RATE_48000;
}
if (codec_config_.sample_rate != BTAV_A2DP_CODEC_SAMPLE_RATE_NONE) break;
// Compute the common capability
if (sampleRate & A2DP_OPUS_SAMPLING_FREQ_48000)
codec_capability_.sample_rate |= BTAV_A2DP_CODEC_SAMPLE_RATE_48000;
// No user preference - try the codec audio config
if (select_audio_sample_rate(&codec_audio_config_, sampleRate,
&result_config_cie, &codec_config_)) {
break;
}
// No user preference - try the default config
if (select_best_sample_rate(
a2dp_opus_default_config.sampleRate & peer_info_cie.sampleRate,
&result_config_cie, &codec_config_)) {
break;
}
// No user preference - use the best match
if (select_best_sample_rate(sampleRate, &result_config_cie,
&codec_config_)) {
break;
}
} while (false);
if (codec_config_.sample_rate == BTAV_A2DP_CODEC_SAMPLE_RATE_NONE) {
LOG_ERROR(
"cannot match sample frequency: local caps = 0x%x "
"peer info = 0x%x",
p_a2dp_opus_caps->sampleRate, peer_info_cie.sampleRate);
goto fail;
}
//
// Select the bits per sample
//
// NOTE: this information is NOT included in the Opus A2DP codec description
// that is sent OTA.
bits_per_sample = p_a2dp_opus_caps->bits_per_sample;
codec_config_.bits_per_sample = BTAV_A2DP_CODEC_BITS_PER_SAMPLE_NONE;
switch (codec_user_config_.bits_per_sample) {
case BTAV_A2DP_CODEC_BITS_PER_SAMPLE_16:
if (bits_per_sample & BTAV_A2DP_CODEC_BITS_PER_SAMPLE_16) {
result_config_cie.bits_per_sample = codec_user_config_.bits_per_sample;
codec_capability_.bits_per_sample = codec_user_config_.bits_per_sample;
codec_config_.bits_per_sample = codec_user_config_.bits_per_sample;
}
break;
case BTAV_A2DP_CODEC_BITS_PER_SAMPLE_24:
if (bits_per_sample & BTAV_A2DP_CODEC_BITS_PER_SAMPLE_24) {
result_config_cie.bits_per_sample = codec_user_config_.bits_per_sample;
codec_capability_.bits_per_sample = codec_user_config_.bits_per_sample;
codec_config_.bits_per_sample = codec_user_config_.bits_per_sample;
}
break;
case BTAV_A2DP_CODEC_BITS_PER_SAMPLE_32:
if (bits_per_sample & BTAV_A2DP_CODEC_BITS_PER_SAMPLE_32) {
result_config_cie.bits_per_sample = codec_user_config_.bits_per_sample;
codec_capability_.bits_per_sample = codec_user_config_.bits_per_sample;
codec_config_.bits_per_sample = codec_user_config_.bits_per_sample;
}
break;
case BTAV_A2DP_CODEC_BITS_PER_SAMPLE_NONE:
result_config_cie.bits_per_sample = BTAV_A2DP_CODEC_BITS_PER_SAMPLE_NONE;
codec_capability_.bits_per_sample = BTAV_A2DP_CODEC_BITS_PER_SAMPLE_NONE;
codec_config_.bits_per_sample = BTAV_A2DP_CODEC_BITS_PER_SAMPLE_NONE;
break;
}
// Select the bits per sample if there is no user preference
do {
// Compute the selectable capability
codec_selectable_capability_.bits_per_sample =
p_a2dp_opus_caps->bits_per_sample;
if (codec_config_.bits_per_sample != BTAV_A2DP_CODEC_BITS_PER_SAMPLE_NONE)
break;
// Compute the common capability
codec_capability_.bits_per_sample = bits_per_sample;
// No user preference - try yhe codec audio config
if (select_audio_bits_per_sample(&codec_audio_config_,
p_a2dp_opus_caps->bits_per_sample,
&result_config_cie, &codec_config_)) {
break;
}
// No user preference - try the default config
if (select_best_bits_per_sample(a2dp_opus_default_config.bits_per_sample,
&result_config_cie, &codec_config_)) {
break;
}
// No user preference - use the best match
if (select_best_bits_per_sample(p_a2dp_opus_caps->bits_per_sample,
&result_config_cie, &codec_config_)) {
break;
}
} while (false);
if (codec_config_.bits_per_sample == BTAV_A2DP_CODEC_BITS_PER_SAMPLE_NONE) {
LOG_ERROR(
"cannot match bits per sample: default = 0x%x "
"user preference = 0x%x",
a2dp_opus_default_config.bits_per_sample,
codec_user_config_.bits_per_sample);
goto fail;
}
//
// Select the channel mode
//
channelMode = p_a2dp_opus_caps->channelMode & peer_info_cie.channelMode;
codec_config_.channel_mode = BTAV_A2DP_CODEC_CHANNEL_MODE_NONE;
switch (codec_user_config_.channel_mode) {
case BTAV_A2DP_CODEC_CHANNEL_MODE_MONO:
if (channelMode & A2DP_OPUS_CHANNEL_MODE_MONO) {
result_config_cie.channelMode = A2DP_OPUS_CHANNEL_MODE_MONO;
codec_capability_.channel_mode = codec_user_config_.channel_mode;
codec_config_.channel_mode = codec_user_config_.channel_mode;
}
break;
case BTAV_A2DP_CODEC_CHANNEL_MODE_STEREO:
if (channelMode & A2DP_OPUS_CHANNEL_MODE_STEREO) {
result_config_cie.channelMode = A2DP_OPUS_CHANNEL_MODE_STEREO;
codec_capability_.channel_mode = codec_user_config_.channel_mode;
codec_config_.channel_mode = codec_user_config_.channel_mode;
}
break;
case BTAV_A2DP_CODEC_CHANNEL_MODE_NONE:
codec_capability_.channel_mode = BTAV_A2DP_CODEC_CHANNEL_MODE_NONE;
codec_config_.channel_mode = BTAV_A2DP_CODEC_CHANNEL_MODE_NONE;
break;
}
// Select the channel mode if there is no user preference
do {
// Compute the selectable capability
if (channelMode & A2DP_OPUS_CHANNEL_MODE_MONO) {
codec_selectable_capability_.channel_mode |=
BTAV_A2DP_CODEC_CHANNEL_MODE_MONO;
}
if (channelMode & A2DP_OPUS_CHANNEL_MODE_STEREO) {
codec_selectable_capability_.channel_mode |=
BTAV_A2DP_CODEC_CHANNEL_MODE_STEREO;
}
if (codec_config_.channel_mode != BTAV_A2DP_CODEC_CHANNEL_MODE_NONE) break;
// Compute the common capability
if (channelMode & A2DP_OPUS_CHANNEL_MODE_MONO)
codec_capability_.channel_mode |= BTAV_A2DP_CODEC_CHANNEL_MODE_MONO;
if (channelMode & A2DP_OPUS_CHANNEL_MODE_STEREO) {
codec_capability_.channel_mode |= BTAV_A2DP_CODEC_CHANNEL_MODE_STEREO;
}
// No user preference - try the codec audio config
if (select_audio_channel_mode(&codec_audio_config_, channelMode,
&result_config_cie, &codec_config_)) {
break;
}
// No user preference - try the default config
if (select_best_channel_mode(
a2dp_opus_default_config.channelMode & peer_info_cie.channelMode,
&result_config_cie, &codec_config_)) {
break;
}
// No user preference - use the best match
if (select_best_channel_mode(channelMode, &result_config_cie,
&codec_config_)) {
break;
}
} while (false);
if (codec_config_.channel_mode == BTAV_A2DP_CODEC_CHANNEL_MODE_NONE) {
LOG_ERROR(
"cannot match channel mode: local caps = 0x%x "
"peer info = 0x%x",
p_a2dp_opus_caps->channelMode, peer_info_cie.channelMode);
goto fail;
}
//
// Select the frame size
//
frameSize = p_a2dp_opus_caps->future1 & peer_info_cie.future1;
codec_config_.codec_specific_1 = BTAV_A2DP_CODEC_FRAME_SIZE_NONE;
switch (codec_user_config_.codec_specific_1) {
case BTAV_A2DP_CODEC_FRAME_SIZE_20MS:
if (frameSize & A2DP_OPUS_20MS_FRAMESIZE) {
result_config_cie.future1 = A2DP_OPUS_20MS_FRAMESIZE;
codec_capability_.codec_specific_1 =
codec_user_config_.codec_specific_1;
codec_config_.codec_specific_1 = codec_user_config_.codec_specific_1;
}
break;
case BTAV_A2DP_CODEC_FRAME_SIZE_10MS:
if (frameSize & A2DP_OPUS_10MS_FRAMESIZE) {
result_config_cie.future1 = A2DP_OPUS_10MS_FRAMESIZE;
codec_capability_.codec_specific_1 =
codec_user_config_.codec_specific_1;
codec_config_.codec_specific_1 = codec_user_config_.codec_specific_1;
}
break;
case BTAV_A2DP_CODEC_FRAME_SIZE_NONE:
codec_capability_.codec_specific_1 = BTAV_A2DP_CODEC_FRAME_SIZE_NONE;
codec_config_.codec_specific_1 = BTAV_A2DP_CODEC_FRAME_SIZE_NONE;
break;
}
// No user preference - set default value
codec_config_.codec_specific_1 = BTAV_A2DP_CODEC_FRAME_SIZE_20MS;
result_config_cie.future1 = A2DP_OPUS_20MS_FRAMESIZE;
result_config_cie.future3 = 0x00;
if (codec_config_.codec_specific_1 == BTAV_A2DP_CODEC_FRAME_SIZE_NONE) {
LOG_ERROR(
"cannot match frame size: local caps = 0x%x "
"peer info = 0x%x",
p_a2dp_opus_caps->future1, peer_info_cie.future1);
goto fail;
}
if (A2DP_BuildInfoOpus(AVDT_MEDIA_TYPE_AUDIO, &result_config_cie,
p_result_codec_config) != A2DP_SUCCESS) {
LOG_ERROR("failed to BuildInfoOpus for result_config_cie");
goto fail;
}
//
// Copy the codec-specific fields if they are not zero
//
if (codec_user_config_.codec_specific_1 != 0)
codec_config_.codec_specific_1 = codec_user_config_.codec_specific_1;
if (codec_user_config_.codec_specific_2 != 0)
codec_config_.codec_specific_2 = codec_user_config_.codec_specific_2;
if (codec_user_config_.codec_specific_3 != 0)
codec_config_.codec_specific_3 = codec_user_config_.codec_specific_3;
if (codec_user_config_.codec_specific_4 != 0)
codec_config_.codec_specific_4 = codec_user_config_.codec_specific_4;
// Create a local copy of the peer codec capability, and the
// result codec config.
if (is_capability) {
status = A2DP_BuildInfoOpus(AVDT_MEDIA_TYPE_AUDIO, &peer_info_cie,
ota_codec_peer_capability_);
} else {
status = A2DP_BuildInfoOpus(AVDT_MEDIA_TYPE_AUDIO, &peer_info_cie,
ota_codec_peer_config_);
}
CHECK(status == A2DP_SUCCESS);
status = A2DP_BuildInfoOpus(AVDT_MEDIA_TYPE_AUDIO, &result_config_cie,
ota_codec_config_);
CHECK(status == A2DP_SUCCESS);
return true;
fail:
// Restore the internal state
codec_config_ = saved_codec_config;
codec_capability_ = saved_codec_capability;
codec_selectable_capability_ = saved_codec_selectable_capability;
codec_user_config_ = saved_codec_user_config;
codec_audio_config_ = saved_codec_audio_config;
memcpy(ota_codec_config_, saved_ota_codec_config, sizeof(ota_codec_config_));
memcpy(ota_codec_peer_capability_, saved_ota_codec_peer_capability,
sizeof(ota_codec_peer_capability_));
memcpy(ota_codec_peer_config_, saved_ota_codec_peer_config,
sizeof(ota_codec_peer_config_));
return false;
}
bool A2dpCodecConfigOpusBase::setPeerCodecCapabilities(
const uint8_t* p_peer_codec_capabilities) {
std::lock_guard<std::recursive_mutex> lock(codec_mutex_);
tA2DP_OPUS_CIE peer_info_cie;
uint8_t channelMode;
uint8_t sampleRate;
const tA2DP_OPUS_CIE* p_a2dp_opus_caps =
(is_source_) ? &a2dp_opus_source_caps : &a2dp_opus_sink_caps;
// Save the internal state
btav_a2dp_codec_config_t saved_codec_selectable_capability =
codec_selectable_capability_;
uint8_t saved_ota_codec_peer_capability[AVDT_CODEC_SIZE];
memcpy(saved_ota_codec_peer_capability, ota_codec_peer_capability_,
sizeof(ota_codec_peer_capability_));
tA2DP_STATUS status =
A2DP_ParseInfoOpus(&peer_info_cie, p_peer_codec_capabilities, true);
if (status != A2DP_SUCCESS) {
LOG_ERROR("can't parse peer's capabilities: error = %d", status);
goto fail;
}
// Compute the selectable capability - sample rate
sampleRate = p_a2dp_opus_caps->sampleRate & peer_info_cie.sampleRate;
if (sampleRate & A2DP_OPUS_SAMPLING_FREQ_48000) {
codec_selectable_capability_.sample_rate |=
BTAV_A2DP_CODEC_SAMPLE_RATE_48000;
}
// Compute the selectable capability - bits per sample
codec_selectable_capability_.bits_per_sample =
p_a2dp_opus_caps->bits_per_sample;
// Compute the selectable capability - channel mode
channelMode = p_a2dp_opus_caps->channelMode & peer_info_cie.channelMode;
if (channelMode & A2DP_OPUS_CHANNEL_MODE_MONO) {
codec_selectable_capability_.channel_mode |=
BTAV_A2DP_CODEC_CHANNEL_MODE_MONO;
}
if (channelMode & A2DP_OPUS_CHANNEL_MODE_STEREO) {
codec_selectable_capability_.channel_mode |=
BTAV_A2DP_CODEC_CHANNEL_MODE_STEREO;
}
LOG_INFO("BuildInfoOpus for peer info cie for ota caps");
status = A2DP_BuildInfoOpus(AVDT_MEDIA_TYPE_AUDIO, &peer_info_cie,
ota_codec_peer_capability_);
CHECK(status == A2DP_SUCCESS);
return true;
fail:
// Restore the internal state
codec_selectable_capability_ = saved_codec_selectable_capability;
memcpy(ota_codec_peer_capability_, saved_ota_codec_peer_capability,
sizeof(ota_codec_peer_capability_));
return false;
}
A2dpCodecConfigOpusSink::A2dpCodecConfigOpusSink(
btav_a2dp_codec_priority_t codec_priority)
: A2dpCodecConfigOpusBase(BTAV_A2DP_CODEC_INDEX_SINK_OPUS,
A2DP_VendorCodecIndexStrOpusSink(),
codec_priority, false) {}
A2dpCodecConfigOpusSink::~A2dpCodecConfigOpusSink() {}
bool A2dpCodecConfigOpusSink::init() {
if (!isValid()) return false;
return true;
}
bool A2dpCodecConfigOpusSink::useRtpHeaderMarkerBit() const { return false; }
bool A2dpCodecConfigOpusSink::updateEncoderUserConfig(
UNUSED_ATTR const tA2DP_ENCODER_INIT_PEER_PARAMS* p_peer_params,
UNUSED_ATTR bool* p_restart_input, UNUSED_ATTR bool* p_restart_output,
UNUSED_ATTR bool* p_config_updated) {
return false;
}