# model model = Model() sparseData = Input("sparseData", "TENSOR_FLOAT32", "{4}") traversalOrder = Parameter("traversalOrder", "TENSOR_INT32", "{4}", [0, 1, 2, 3]) blockMap = Parameter("blockMap", "TENSOR_INT32", "{2}", [0, 1]) dimFormat = Parameter("dimFormat", "TENSOR_INT32", "{4}", [0, 0, 1, 1]) dimensions = Parameter("dimensions", "TENSOR_INT32", "{4}", [2, 3, 5, 7]) d0ArrSegments = Parameter("d0ArrSegments", "TENSOR_INT32", "{0}", []) d0ArrIndices = Parameter("d0ArrIndices", "TENSOR_INT32", "{0}", []) d1ArrSegments = Parameter("d1ArrSegments", "TENSOR_INT32", "{0}", []) d1ArrIndices = Parameter("d1ArrIndices", "TENSOR_INT32", "{0}", []) d2ArrSegments = Parameter("d2ArrSegments", "TENSOR_INT32", "{7}", [0, 1, 2, 3, 4, 4, 4]) d2ArrIndices = Parameter("d2ArrIndices", "TENSOR_INT32", "{4}", [1, 2, 3, 1]) d3ArrSegments = Parameter("d3ArrSegments", "TENSOR_INT32", "{5}", [0, 1, 2, 3, 4]) d3ArrIndices = Parameter("d3ArrIndices", "TENSOR_INT32", "{4}", [1, 2, 3, 3]) denseOut = Output("denseOut", "TENSOR_FLOAT32", "{10, 21}") model = model.Operation("DENSIFY", sparseData, traversalOrder, blockMap, dimFormat, dimensions, d0ArrSegments, d0ArrIndices, d1ArrSegments, d1ArrIndices, d2ArrSegments, d2ArrIndices, d3ArrSegments, d3ArrIndices).To(denseOut) # Example 1. Input in operand 0, input0 = {sparseData: # input 0 [11.0, 13.0, 17.0, 19.0]} outputData = [0.0] * 210 outputData[22] = 11.0 outputData[51] = 13.0 outputData[80] = 17.0 outputData[129] = 19.0 output0 = {denseOut: # output 0 outputData} quant8_symm = DataTypeConverter().Identify({ sparseData: ("TENSOR_QUANT8_SYMM", 3.0), denseOut: ("TENSOR_QUANT8_SYMM", 3.0) }) quant8_asymm = DataTypeConverter().Identify({ sparseData: ("TENSOR_QUANT8_ASYMM", 2.25, 3), denseOut: ("TENSOR_QUANT8_ASYMM", 2.25, 3) }) quant8_asymm_signed = DataTypeConverter().Identify({ sparseData: ("TENSOR_QUANT8_ASYMM_SIGNED", 2.875, -4), denseOut: ("TENSOR_QUANT8_ASYMM_SIGNED", 2.875, -4) }) quant16_symm = DataTypeConverter().Identify({ sparseData: ("TENSOR_QUANT16_SYMM", 3.25), denseOut: ("TENSOR_QUANT16_SYMM", 3.25) }) quant16_asymm = DataTypeConverter().Identify({ sparseData: ("TENSOR_QUANT16_ASYMM", 6.0, 14), denseOut: ("TENSOR_QUANT16_ASYMM", 6.0, 14) }) # Instantiate an example Example((input0, output0)).AddVariations("relaxed", "float16", "int32", quant8_symm, quant8_asymm, quant8_asymm_signed, quant16_symm, quant16_asymm)