/* * Copyright 2021 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ /****************************************************************************** * * Utility functions to help build and parse the Opus Codec Information * Element and Media Payload. * ******************************************************************************/ #define LOG_TAG "a2dp_vendor_opus" #include "a2dp_vendor_opus.h" #include #include #include "a2dp_vendor.h" #include "a2dp_vendor_opus_decoder.h" #include "a2dp_vendor_opus_encoder.h" #include "bt_target.h" #include "bt_utils.h" #include "btif_av_co.h" #include "osi/include/log.h" #include "osi/include/osi.h" // data type for the Opus Codec Information Element */ // NOTE: bits_per_sample and frameSize for Opus encoder initialization. typedef struct { uint32_t vendorId; uint16_t codecId; /* Codec ID for Opus */ uint8_t sampleRate; /* Sampling Frequency */ uint8_t channelMode; /* STEREO/DUAL/MONO */ btav_a2dp_codec_bits_per_sample_t bits_per_sample; uint8_t future1; /* codec_specific_1 framesize */ uint8_t future2; /* codec_specific_2 */ uint8_t future3; /* codec_specific_3 */ uint8_t future4; /* codec_specific_4 */ } tA2DP_OPUS_CIE; /* Opus Source codec capabilities */ static const tA2DP_OPUS_CIE a2dp_opus_source_caps = { A2DP_OPUS_VENDOR_ID, // vendorId A2DP_OPUS_CODEC_ID, // codecId // sampleRate (A2DP_OPUS_SAMPLING_FREQ_48000), // channelMode (A2DP_OPUS_CHANNEL_MODE_STEREO), // bits_per_sample (BTAV_A2DP_CODEC_BITS_PER_SAMPLE_16), // future 1 frameSize (A2DP_OPUS_20MS_FRAMESIZE), // future 2 0x00, // future 3 0x00, // future 4 0x00}; /* Opus Sink codec capabilities */ static const tA2DP_OPUS_CIE a2dp_opus_sink_caps = { A2DP_OPUS_VENDOR_ID, // vendorId A2DP_OPUS_CODEC_ID, // codecId // sampleRate (A2DP_OPUS_SAMPLING_FREQ_48000), // channelMode (A2DP_OPUS_CHANNEL_MODE_STEREO), // bits_per_sample (BTAV_A2DP_CODEC_BITS_PER_SAMPLE_16), // future 1 frameSize (A2DP_OPUS_20MS_FRAMESIZE), // future 2 0x00, // future 3 0x00, // future 4 0x00}; /* Default Opus codec configuration */ static const tA2DP_OPUS_CIE a2dp_opus_default_config = { A2DP_OPUS_VENDOR_ID, // vendorId A2DP_OPUS_CODEC_ID, // codecId A2DP_OPUS_SAMPLING_FREQ_48000, // sampleRate A2DP_OPUS_CHANNEL_MODE_STEREO, // channelMode BTAV_A2DP_CODEC_BITS_PER_SAMPLE_16, // bits_per_sample A2DP_OPUS_20MS_FRAMESIZE, // frameSize 0x00, // future 2 0x00, // future 3 0x00 // future 4 }; static const tA2DP_ENCODER_INTERFACE a2dp_encoder_interface_opus = { a2dp_vendor_opus_encoder_init, a2dp_vendor_opus_encoder_cleanup, a2dp_vendor_opus_feeding_reset, a2dp_vendor_opus_feeding_flush, a2dp_vendor_opus_get_encoder_interval_ms, a2dp_vendor_opus_get_effective_frame_size, a2dp_vendor_opus_send_frames, a2dp_vendor_opus_set_transmit_queue_length}; static const tA2DP_DECODER_INTERFACE a2dp_decoder_interface_opus = { a2dp_vendor_opus_decoder_init, a2dp_vendor_opus_decoder_cleanup, a2dp_vendor_opus_decoder_decode_packet, a2dp_vendor_opus_decoder_start, a2dp_vendor_opus_decoder_suspend, a2dp_vendor_opus_decoder_configure, }; UNUSED_ATTR static tA2DP_STATUS A2DP_CodecInfoMatchesCapabilityOpus( const tA2DP_OPUS_CIE* p_cap, const uint8_t* p_codec_info, bool is_peer_codec_info); // Builds the Opus Media Codec Capabilities byte sequence beginning from the // LOSC octet. |media_type| is the media type |AVDT_MEDIA_TYPE_*|. // |p_ie| is a pointer to the Opus Codec Information Element information. // The result is stored in |p_result|. Returns A2DP_SUCCESS on success, // otherwise the corresponding A2DP error status code. static tA2DP_STATUS A2DP_BuildInfoOpus(uint8_t media_type, const tA2DP_OPUS_CIE* p_ie, uint8_t* p_result) { if (p_ie == NULL || p_result == NULL) { LOG_ERROR("invalid information element"); return A2DP_INVALID_PARAMS; } *p_result++ = A2DP_OPUS_CODEC_LEN; *p_result++ = (media_type << 4); *p_result++ = A2DP_MEDIA_CT_NON_A2DP; // Vendor ID and Codec ID *p_result++ = (uint8_t)(p_ie->vendorId & 0x000000FF); *p_result++ = (uint8_t)((p_ie->vendorId & 0x0000FF00) >> 8); *p_result++ = (uint8_t)((p_ie->vendorId & 0x00FF0000) >> 16); *p_result++ = (uint8_t)((p_ie->vendorId & 0xFF000000) >> 24); *p_result++ = (uint8_t)(p_ie->codecId & 0x00FF); *p_result++ = (uint8_t)((p_ie->codecId & 0xFF00) >> 8); *p_result = 0; *p_result |= (uint8_t)(p_ie->channelMode) & A2DP_OPUS_CHANNEL_MODE_MASK; if ((*p_result & A2DP_OPUS_CHANNEL_MODE_MASK) == 0) { LOG_ERROR("channelmode 0x%X setting failed", (p_ie->channelMode)); return A2DP_INVALID_PARAMS; } *p_result |= ((uint8_t)(p_ie->future1) & A2DP_OPUS_FRAMESIZE_MASK); if ((*p_result & A2DP_OPUS_FRAMESIZE_MASK) == 0) { LOG_ERROR("frameSize 0x%X setting failed", (p_ie->future1)); return A2DP_INVALID_PARAMS; } *p_result |= ((uint8_t)(p_ie->sampleRate) & A2DP_OPUS_SAMPLING_FREQ_MASK); if ((*p_result & A2DP_OPUS_SAMPLING_FREQ_MASK) == 0) { LOG_ERROR("samplerate 0x%X setting failed", (p_ie->sampleRate)); return A2DP_INVALID_PARAMS; } p_result++; return A2DP_SUCCESS; } // Parses the Opus Media Codec Capabilities byte sequence beginning from the // LOSC octet. The result is stored in |p_ie|. The byte sequence to parse is // |p_codec_info|. If |is_capability| is true, the byte sequence is // codec capabilities, otherwise is codec configuration. // Returns A2DP_SUCCESS on success, otherwise the corresponding A2DP error // status code. static tA2DP_STATUS A2DP_ParseInfoOpus(tA2DP_OPUS_CIE* p_ie, const uint8_t* p_codec_info, bool is_capability) { uint8_t losc; uint8_t media_type; tA2DP_CODEC_TYPE codec_type; if (p_ie == NULL || p_codec_info == NULL) { LOG_ERROR("unable to parse information element"); return A2DP_INVALID_PARAMS; } // Check the codec capability length losc = *p_codec_info++; if (losc != A2DP_OPUS_CODEC_LEN) { LOG_ERROR("invalid codec ie length %d", losc); return A2DP_WRONG_CODEC; } media_type = (*p_codec_info++) >> 4; codec_type = *p_codec_info++; /* Check the Media Type and Media Codec Type */ if (media_type != AVDT_MEDIA_TYPE_AUDIO || codec_type != A2DP_MEDIA_CT_NON_A2DP) { LOG_ERROR("invalid codec"); return A2DP_WRONG_CODEC; } // Check the Vendor ID and Codec ID */ p_ie->vendorId = (*p_codec_info & 0x000000FF) | (*(p_codec_info + 1) << 8 & 0x0000FF00) | (*(p_codec_info + 2) << 16 & 0x00FF0000) | (*(p_codec_info + 3) << 24 & 0xFF000000); p_codec_info += 4; p_ie->codecId = (*p_codec_info & 0x00FF) | (*(p_codec_info + 1) << 8 & 0xFF00); p_codec_info += 2; if (p_ie->vendorId != A2DP_OPUS_VENDOR_ID || p_ie->codecId != A2DP_OPUS_CODEC_ID) { LOG_ERROR("wrong vendor or codec id"); return A2DP_WRONG_CODEC; } p_ie->channelMode = *p_codec_info & A2DP_OPUS_CHANNEL_MODE_MASK; p_ie->future1 = *p_codec_info & A2DP_OPUS_FRAMESIZE_MASK; p_ie->sampleRate = *p_codec_info & A2DP_OPUS_SAMPLING_FREQ_MASK; p_ie->bits_per_sample = BTAV_A2DP_CODEC_BITS_PER_SAMPLE_16; if (is_capability) { // NOTE: The checks here are very liberal. We should be using more // pedantic checks specific to the SRC or SNK as specified in the spec. if (A2DP_BitsSet(p_ie->sampleRate) == A2DP_SET_ZERO_BIT) { LOG_ERROR("invalid sample rate 0x%X", p_ie->sampleRate); return A2DP_BAD_SAMP_FREQ; } if (A2DP_BitsSet(p_ie->channelMode) == A2DP_SET_ZERO_BIT) { LOG_ERROR("invalid channel mode"); return A2DP_BAD_CH_MODE; } return A2DP_SUCCESS; } if (A2DP_BitsSet(p_ie->sampleRate) != A2DP_SET_ONE_BIT) { LOG_ERROR("invalid sampling frequency 0x%X", p_ie->sampleRate); return A2DP_BAD_SAMP_FREQ; } if (A2DP_BitsSet(p_ie->channelMode) != A2DP_SET_ONE_BIT) { LOG_ERROR("invalid channel mode."); return A2DP_BAD_CH_MODE; } return A2DP_SUCCESS; } // Build the Opus Media Payload Header. // |p_dst| points to the location where the header should be written to. // If |frag| is true, the media payload frame is fragmented. // |start| is true for the first packet of a fragmented frame. // |last| is true for the last packet of a fragmented frame. // If |frag| is false, |num| is the number of number of frames in the packet, // otherwise is the number of remaining fragments (including this one). static void A2DP_BuildMediaPayloadHeaderOpus(uint8_t* p_dst, bool frag, bool start, bool last, uint8_t num) { if (p_dst == NULL) return; *p_dst = 0; if (frag) *p_dst |= A2DP_OPUS_HDR_F_MSK; if (start) *p_dst |= A2DP_OPUS_HDR_S_MSK; if (last) *p_dst |= A2DP_OPUS_HDR_L_MSK; *p_dst |= (A2DP_OPUS_HDR_NUM_MSK & num); } bool A2DP_IsVendorSourceCodecValidOpus(const uint8_t* p_codec_info) { tA2DP_OPUS_CIE cfg_cie; /* Use a liberal check when parsing the codec info */ return (A2DP_ParseInfoOpus(&cfg_cie, p_codec_info, false) == A2DP_SUCCESS) || (A2DP_ParseInfoOpus(&cfg_cie, p_codec_info, true) == A2DP_SUCCESS); } bool A2DP_IsVendorSinkCodecValidOpus(const uint8_t* p_codec_info) { tA2DP_OPUS_CIE cfg_cie; /* Use a liberal check when parsing the codec info */ return (A2DP_ParseInfoOpus(&cfg_cie, p_codec_info, false) == A2DP_SUCCESS) || (A2DP_ParseInfoOpus(&cfg_cie, p_codec_info, true) == A2DP_SUCCESS); } bool A2DP_IsVendorPeerSourceCodecValidOpus(const uint8_t* p_codec_info) { tA2DP_OPUS_CIE cfg_cie; /* Use a liberal check when parsing the codec info */ return (A2DP_ParseInfoOpus(&cfg_cie, p_codec_info, false) == A2DP_SUCCESS) || (A2DP_ParseInfoOpus(&cfg_cie, p_codec_info, true) == A2DP_SUCCESS); } bool A2DP_IsVendorPeerSinkCodecValidOpus(const uint8_t* p_codec_info) { tA2DP_OPUS_CIE cfg_cie; /* Use a liberal check when parsing the codec info */ return (A2DP_ParseInfoOpus(&cfg_cie, p_codec_info, false) == A2DP_SUCCESS) || (A2DP_ParseInfoOpus(&cfg_cie, p_codec_info, true) == A2DP_SUCCESS); } bool A2DP_IsVendorSinkCodecSupportedOpus(const uint8_t* p_codec_info) { return A2DP_CodecInfoMatchesCapabilityOpus(&a2dp_opus_sink_caps, p_codec_info, false) == A2DP_SUCCESS; } bool A2DP_IsPeerSourceCodecSupportedOpus(const uint8_t* p_codec_info) { return A2DP_CodecInfoMatchesCapabilityOpus(&a2dp_opus_sink_caps, p_codec_info, true) == A2DP_SUCCESS; } // Checks whether A2DP Opus codec configuration matches with a device's codec // capabilities. |p_cap| is the Opus codec configuration. |p_codec_info| is // the device's codec capabilities. // If |is_capability| is true, the byte sequence is codec capabilities, // otherwise is codec configuration. // |p_codec_info| contains the codec capabilities for a peer device that // is acting as an A2DP source. // Returns A2DP_SUCCESS if the codec configuration matches with capabilities, // otherwise the corresponding A2DP error status code. static tA2DP_STATUS A2DP_CodecInfoMatchesCapabilityOpus( const tA2DP_OPUS_CIE* p_cap, const uint8_t* p_codec_info, bool is_capability) { tA2DP_STATUS status; tA2DP_OPUS_CIE cfg_cie; /* parse configuration */ status = A2DP_ParseInfoOpus(&cfg_cie, p_codec_info, is_capability); if (status != A2DP_SUCCESS) { LOG_ERROR("parsing failed %d", status); return status; } /* verify that each parameter is in range */ LOG_VERBOSE("SAMPLING FREQ peer: 0x%x, capability 0x%x", cfg_cie.sampleRate, p_cap->sampleRate); LOG_VERBOSE("CH_MODE peer: 0x%x, capability 0x%x", cfg_cie.channelMode, p_cap->channelMode); LOG_VERBOSE("FRAMESIZE peer: 0x%x, capability 0x%x", cfg_cie.future1, p_cap->future1); /* sampling frequency */ if ((cfg_cie.sampleRate & p_cap->sampleRate) == 0) return A2DP_NS_SAMP_FREQ; /* channel mode */ if ((cfg_cie.channelMode & p_cap->channelMode) == 0) return A2DP_NS_CH_MODE; /* frameSize */ if ((cfg_cie.future1 & p_cap->future1) == 0) return A2DP_NS_FRAMESIZE; return A2DP_SUCCESS; } bool A2DP_VendorUsesRtpHeaderOpus(UNUSED_ATTR bool content_protection_enabled, UNUSED_ATTR const uint8_t* p_codec_info) { return true; } const char* A2DP_VendorCodecNameOpus(UNUSED_ATTR const uint8_t* p_codec_info) { return "Opus"; } bool A2DP_VendorCodecTypeEqualsOpus(const uint8_t* p_codec_info_a, const uint8_t* p_codec_info_b) { tA2DP_OPUS_CIE Opus_cie_a; tA2DP_OPUS_CIE Opus_cie_b; // Check whether the codec info contains valid data tA2DP_STATUS a2dp_status = A2DP_ParseInfoOpus(&Opus_cie_a, p_codec_info_a, true); if (a2dp_status != A2DP_SUCCESS) { LOG_ERROR("cannot decode codec information: %d", a2dp_status); return false; } a2dp_status = A2DP_ParseInfoOpus(&Opus_cie_b, p_codec_info_b, true); if (a2dp_status != A2DP_SUCCESS) { LOG_ERROR("cannot decode codec information: %d", a2dp_status); return false; } return true; } bool A2DP_VendorCodecEqualsOpus(const uint8_t* p_codec_info_a, const uint8_t* p_codec_info_b) { tA2DP_OPUS_CIE Opus_cie_a; tA2DP_OPUS_CIE Opus_cie_b; // Check whether the codec info contains valid data tA2DP_STATUS a2dp_status = A2DP_ParseInfoOpus(&Opus_cie_a, p_codec_info_a, true); if (a2dp_status != A2DP_SUCCESS) { LOG_ERROR("cannot decode codec information: %d", a2dp_status); return false; } a2dp_status = A2DP_ParseInfoOpus(&Opus_cie_b, p_codec_info_b, true); if (a2dp_status != A2DP_SUCCESS) { LOG_ERROR("cannot decode codec information: %d", a2dp_status); return false; } return (Opus_cie_a.sampleRate == Opus_cie_b.sampleRate) && (Opus_cie_a.channelMode == Opus_cie_b.channelMode) && (Opus_cie_a.future1 == Opus_cie_b.future1); } int A2DP_VendorGetBitRateOpus(const uint8_t* p_codec_info) { int channel_count = A2DP_VendorGetTrackChannelCountOpus(p_codec_info); int framesize = A2DP_VendorGetFrameSizeOpus(p_codec_info); int samplerate = A2DP_VendorGetTrackSampleRateOpus(p_codec_info); // in milliseconds switch ((framesize * 1000) / samplerate) { case 20: if (channel_count == 2) { return 256000; } else if (channel_count == 1) { return 128000; } else return -1; default: return -1; } } int A2DP_VendorGetTrackSampleRateOpus(const uint8_t* p_codec_info) { tA2DP_OPUS_CIE Opus_cie; // Check whether the codec info contains valid data tA2DP_STATUS a2dp_status = A2DP_ParseInfoOpus(&Opus_cie, p_codec_info, false); if (a2dp_status != A2DP_SUCCESS) { LOG_ERROR("cannot decode codec information: %d", a2dp_status); return -1; } switch (Opus_cie.sampleRate) { case A2DP_OPUS_SAMPLING_FREQ_48000: return 48000; } return -1; } int A2DP_VendorGetTrackBitsPerSampleOpus(const uint8_t* p_codec_info) { tA2DP_OPUS_CIE Opus_cie; // Check whether the codec info contains valid data tA2DP_STATUS a2dp_status = A2DP_ParseInfoOpus(&Opus_cie, p_codec_info, false); if (a2dp_status != A2DP_SUCCESS) { LOG_ERROR("cannot decode codec information: %d", a2dp_status); return -1; } switch (Opus_cie.bits_per_sample) { case BTAV_A2DP_CODEC_BITS_PER_SAMPLE_16: return 16; case BTAV_A2DP_CODEC_BITS_PER_SAMPLE_24: return 24; case BTAV_A2DP_CODEC_BITS_PER_SAMPLE_32: return 32; case BTAV_A2DP_CODEC_BITS_PER_SAMPLE_NONE: default: LOG_ERROR("Invalid bit depth setting"); return -1; } } int A2DP_VendorGetTrackChannelCountOpus(const uint8_t* p_codec_info) { tA2DP_OPUS_CIE Opus_cie; // Check whether the codec info contains valid data tA2DP_STATUS a2dp_status = A2DP_ParseInfoOpus(&Opus_cie, p_codec_info, false); if (a2dp_status != A2DP_SUCCESS) { LOG_ERROR("cannot decode codec information: %d", a2dp_status); return -1; } switch (Opus_cie.channelMode) { case A2DP_OPUS_CHANNEL_MODE_MONO: return 1; case A2DP_OPUS_CHANNEL_MODE_STEREO: case A2DP_OPUS_CHANNEL_MODE_DUAL_MONO: return 2; default: LOG_ERROR("Invalid channel setting"); } return -1; } int A2DP_VendorGetSinkTrackChannelTypeOpus(const uint8_t* p_codec_info) { tA2DP_OPUS_CIE Opus_cie; // Check whether the codec info contains valid data tA2DP_STATUS a2dp_status = A2DP_ParseInfoOpus(&Opus_cie, p_codec_info, false); if (a2dp_status != A2DP_SUCCESS) { LOG_ERROR("cannot decode codec information: %d", a2dp_status); return -1; } switch (Opus_cie.channelMode) { case A2DP_OPUS_CHANNEL_MODE_MONO: return 1; case A2DP_OPUS_CHANNEL_MODE_STEREO: return 2; } return -1; } int A2DP_VendorGetChannelModeCodeOpus(const uint8_t* p_codec_info) { tA2DP_OPUS_CIE Opus_cie; // Check whether the codec info contains valid data tA2DP_STATUS a2dp_status = A2DP_ParseInfoOpus(&Opus_cie, p_codec_info, false); if (a2dp_status != A2DP_SUCCESS) { LOG_ERROR("cannot decode codec information: %d", a2dp_status); return -1; } switch (Opus_cie.channelMode) { case A2DP_OPUS_CHANNEL_MODE_MONO: case A2DP_OPUS_CHANNEL_MODE_STEREO: return Opus_cie.channelMode; default: break; } return -1; } int A2DP_VendorGetFrameSizeOpus(const uint8_t* p_codec_info) { tA2DP_OPUS_CIE Opus_cie; // Check whether the codec info contains valid data tA2DP_STATUS a2dp_status = A2DP_ParseInfoOpus(&Opus_cie, p_codec_info, false); if (a2dp_status != A2DP_SUCCESS) { LOG_ERROR("cannot decode codec information: %d", a2dp_status); return -1; } int samplerate = A2DP_VendorGetTrackSampleRateOpus(p_codec_info); switch (Opus_cie.future1) { case A2DP_OPUS_20MS_FRAMESIZE: if (samplerate == 48000) { return 960; } } return -1; } bool A2DP_VendorGetPacketTimestampOpus(UNUSED_ATTR const uint8_t* p_codec_info, const uint8_t* p_data, uint32_t* p_timestamp) { *p_timestamp = *(const uint32_t*)p_data; return true; } bool A2DP_VendorBuildCodecHeaderOpus(UNUSED_ATTR const uint8_t* p_codec_info, BT_HDR* p_buf, uint16_t frames_per_packet) { uint8_t* p; p_buf->offset -= A2DP_OPUS_MPL_HDR_LEN; p = (uint8_t*)(p_buf + 1) + p_buf->offset; p_buf->len += A2DP_OPUS_MPL_HDR_LEN; A2DP_BuildMediaPayloadHeaderOpus(p, false, false, false, (uint8_t)frames_per_packet); return true; } std::string A2DP_VendorCodecInfoStringOpus(const uint8_t* p_codec_info) { std::stringstream res; std::string field; tA2DP_STATUS a2dp_status; tA2DP_OPUS_CIE Opus_cie; a2dp_status = A2DP_ParseInfoOpus(&Opus_cie, p_codec_info, true); if (a2dp_status != A2DP_SUCCESS) { res << "A2DP_ParseInfoOpus fail: " << loghex(a2dp_status); return res.str(); } res << "\tname: Opus\n"; // Sample frequency field.clear(); AppendField(&field, (Opus_cie.sampleRate == 0), "NONE"); AppendField(&field, (Opus_cie.sampleRate & A2DP_OPUS_SAMPLING_FREQ_48000), "48000"); res << "\tsamp_freq: " << field << " (" << loghex(Opus_cie.sampleRate) << ")\n"; // Channel mode field.clear(); AppendField(&field, (Opus_cie.channelMode == 0), "NONE"); AppendField(&field, (Opus_cie.channelMode & A2DP_OPUS_CHANNEL_MODE_MONO), "Mono"); AppendField(&field, (Opus_cie.channelMode & A2DP_OPUS_CHANNEL_MODE_STEREO), "Stereo"); res << "\tch_mode: " << field << " (" << loghex(Opus_cie.channelMode) << ")\n"; // Framesize field.clear(); AppendField(&field, (Opus_cie.future1 == 0), "NONE"); AppendField(&field, (Opus_cie.future1 & A2DP_OPUS_20MS_FRAMESIZE), "20ms"); AppendField(&field, (Opus_cie.future1 & A2DP_OPUS_10MS_FRAMESIZE), "10ms"); res << "\tframesize: " << field << " (" << loghex(Opus_cie.future1) << ")\n"; return res.str(); } const tA2DP_ENCODER_INTERFACE* A2DP_VendorGetEncoderInterfaceOpus( const uint8_t* p_codec_info) { if (!A2DP_IsVendorSourceCodecValidOpus(p_codec_info)) return NULL; return &a2dp_encoder_interface_opus; } const tA2DP_DECODER_INTERFACE* A2DP_VendorGetDecoderInterfaceOpus( const uint8_t* p_codec_info) { if (!A2DP_IsVendorSinkCodecValidOpus(p_codec_info)) return NULL; return &a2dp_decoder_interface_opus; } bool A2DP_VendorAdjustCodecOpus(uint8_t* p_codec_info) { tA2DP_OPUS_CIE cfg_cie; // Nothing to do: just verify the codec info is valid if (A2DP_ParseInfoOpus(&cfg_cie, p_codec_info, true) != A2DP_SUCCESS) return false; return true; } btav_a2dp_codec_index_t A2DP_VendorSourceCodecIndexOpus( UNUSED_ATTR const uint8_t* p_codec_info) { return BTAV_A2DP_CODEC_INDEX_SOURCE_OPUS; } btav_a2dp_codec_index_t A2DP_VendorSinkCodecIndexOpus( UNUSED_ATTR const uint8_t* p_codec_info) { return BTAV_A2DP_CODEC_INDEX_SINK_OPUS; } const char* A2DP_VendorCodecIndexStrOpus(void) { return "Opus"; } const char* A2DP_VendorCodecIndexStrOpusSink(void) { return "Opus SINK"; } bool A2DP_VendorInitCodecConfigOpus(AvdtpSepConfig* p_cfg) { if (A2DP_BuildInfoOpus(AVDT_MEDIA_TYPE_AUDIO, &a2dp_opus_source_caps, p_cfg->codec_info) != A2DP_SUCCESS) { return false; } #if (BTA_AV_CO_CP_SCMS_T == TRUE) /* Content protection info - support SCMS-T */ uint8_t* p = p_cfg->protect_info; *p++ = AVDT_CP_LOSC; UINT16_TO_STREAM(p, AVDT_CP_SCMS_T_ID); p_cfg->num_protect = 1; #endif return true; } bool A2DP_VendorInitCodecConfigOpusSink(AvdtpSepConfig* p_cfg) { return A2DP_BuildInfoOpus(AVDT_MEDIA_TYPE_AUDIO, &a2dp_opus_sink_caps, p_cfg->codec_info) == A2DP_SUCCESS; } UNUSED_ATTR static void build_codec_config(const tA2DP_OPUS_CIE& config_cie, btav_a2dp_codec_config_t* result) { if (config_cie.sampleRate & A2DP_OPUS_SAMPLING_FREQ_48000) result->sample_rate |= BTAV_A2DP_CODEC_SAMPLE_RATE_48000; result->bits_per_sample = config_cie.bits_per_sample; if (config_cie.channelMode & A2DP_OPUS_CHANNEL_MODE_MONO) result->channel_mode |= BTAV_A2DP_CODEC_CHANNEL_MODE_MONO; if (config_cie.channelMode & A2DP_OPUS_CHANNEL_MODE_STEREO) { result->channel_mode |= BTAV_A2DP_CODEC_CHANNEL_MODE_STEREO; } if (config_cie.future1 & A2DP_OPUS_20MS_FRAMESIZE) result->codec_specific_1 |= BTAV_A2DP_CODEC_FRAME_SIZE_20MS; if (config_cie.future1 & A2DP_OPUS_10MS_FRAMESIZE) result->codec_specific_1 |= BTAV_A2DP_CODEC_FRAME_SIZE_10MS; } A2dpCodecConfigOpusSource::A2dpCodecConfigOpusSource( btav_a2dp_codec_priority_t codec_priority) : A2dpCodecConfigOpusBase(BTAV_A2DP_CODEC_INDEX_SOURCE_OPUS, A2DP_VendorCodecIndexStrOpus(), codec_priority, true) { // Compute the local capability if (a2dp_opus_source_caps.sampleRate & A2DP_OPUS_SAMPLING_FREQ_48000) { codec_local_capability_.sample_rate |= BTAV_A2DP_CODEC_SAMPLE_RATE_48000; } codec_local_capability_.bits_per_sample = a2dp_opus_source_caps.bits_per_sample; if (a2dp_opus_source_caps.channelMode & A2DP_OPUS_CHANNEL_MODE_MONO) { codec_local_capability_.channel_mode |= BTAV_A2DP_CODEC_CHANNEL_MODE_MONO; } if (a2dp_opus_source_caps.channelMode & A2DP_OPUS_CHANNEL_MODE_STEREO) { codec_local_capability_.channel_mode |= BTAV_A2DP_CODEC_CHANNEL_MODE_STEREO; } } A2dpCodecConfigOpusSource::~A2dpCodecConfigOpusSource() {} bool A2dpCodecConfigOpusSource::init() { if (!isValid()) return false; return true; } bool A2dpCodecConfigOpusSource::useRtpHeaderMarkerBit() const { return false; } // // Selects the best sample rate from |sampleRate|. // The result is stored in |p_result| and |p_codec_config|. // Returns true if a selection was made, otherwise false. // static bool select_best_sample_rate(uint8_t sampleRate, tA2DP_OPUS_CIE* p_result, btav_a2dp_codec_config_t* p_codec_config) { if (sampleRate & A2DP_OPUS_SAMPLING_FREQ_48000) { p_result->sampleRate = A2DP_OPUS_SAMPLING_FREQ_48000; p_codec_config->sample_rate = BTAV_A2DP_CODEC_SAMPLE_RATE_48000; return true; } return false; } // // Selects the audio sample rate from |p_codec_audio_config|. // |sampleRate| contains the capability. // The result is stored in |p_result| and |p_codec_config|. // Returns true if a selection was made, otherwise false. // static bool select_audio_sample_rate( const btav_a2dp_codec_config_t* p_codec_audio_config, uint8_t sampleRate, tA2DP_OPUS_CIE* p_result, btav_a2dp_codec_config_t* p_codec_config) { switch (p_codec_audio_config->sample_rate) { case BTAV_A2DP_CODEC_SAMPLE_RATE_48000: if (sampleRate & A2DP_OPUS_SAMPLING_FREQ_48000) { p_result->sampleRate = A2DP_OPUS_SAMPLING_FREQ_48000; p_codec_config->sample_rate = BTAV_A2DP_CODEC_SAMPLE_RATE_48000; return true; } break; case BTAV_A2DP_CODEC_SAMPLE_RATE_16000: case BTAV_A2DP_CODEC_SAMPLE_RATE_24000: case BTAV_A2DP_CODEC_SAMPLE_RATE_44100: case BTAV_A2DP_CODEC_SAMPLE_RATE_88200: case BTAV_A2DP_CODEC_SAMPLE_RATE_96000: case BTAV_A2DP_CODEC_SAMPLE_RATE_176400: case BTAV_A2DP_CODEC_SAMPLE_RATE_192000: case BTAV_A2DP_CODEC_SAMPLE_RATE_NONE: break; } return false; } // // Selects the best bits per sample from |bits_per_sample|. // |bits_per_sample| contains the capability. // The result is stored in |p_result| and |p_codec_config|. // Returns true if a selection was made, otherwise false. // static bool select_best_bits_per_sample( btav_a2dp_codec_bits_per_sample_t bits_per_sample, tA2DP_OPUS_CIE* p_result, btav_a2dp_codec_config_t* p_codec_config) { if (bits_per_sample & BTAV_A2DP_CODEC_BITS_PER_SAMPLE_32) { p_codec_config->bits_per_sample = BTAV_A2DP_CODEC_BITS_PER_SAMPLE_32; p_result->bits_per_sample = BTAV_A2DP_CODEC_BITS_PER_SAMPLE_32; return true; } if (bits_per_sample & BTAV_A2DP_CODEC_BITS_PER_SAMPLE_24) { p_codec_config->bits_per_sample = BTAV_A2DP_CODEC_BITS_PER_SAMPLE_24; p_result->bits_per_sample = BTAV_A2DP_CODEC_BITS_PER_SAMPLE_24; return true; } if (bits_per_sample & BTAV_A2DP_CODEC_BITS_PER_SAMPLE_16) { p_codec_config->bits_per_sample = BTAV_A2DP_CODEC_BITS_PER_SAMPLE_16; p_result->bits_per_sample = BTAV_A2DP_CODEC_BITS_PER_SAMPLE_16; return true; } return false; } // // Selects the audio bits per sample from |p_codec_audio_config|. // |bits_per_sample| contains the capability. // The result is stored in |p_result| and |p_codec_config|. // Returns true if a selection was made, otherwise false. // static bool select_audio_bits_per_sample( const btav_a2dp_codec_config_t* p_codec_audio_config, btav_a2dp_codec_bits_per_sample_t bits_per_sample, tA2DP_OPUS_CIE* p_result, btav_a2dp_codec_config_t* p_codec_config) { switch (p_codec_audio_config->bits_per_sample) { case BTAV_A2DP_CODEC_BITS_PER_SAMPLE_16: if (bits_per_sample & BTAV_A2DP_CODEC_BITS_PER_SAMPLE_16) { p_codec_config->bits_per_sample = BTAV_A2DP_CODEC_BITS_PER_SAMPLE_16; p_result->bits_per_sample = BTAV_A2DP_CODEC_BITS_PER_SAMPLE_16; return true; } break; case BTAV_A2DP_CODEC_BITS_PER_SAMPLE_24: if (bits_per_sample & BTAV_A2DP_CODEC_BITS_PER_SAMPLE_24) { p_codec_config->bits_per_sample = BTAV_A2DP_CODEC_BITS_PER_SAMPLE_24; p_result->bits_per_sample = BTAV_A2DP_CODEC_BITS_PER_SAMPLE_24; return true; } break; case BTAV_A2DP_CODEC_BITS_PER_SAMPLE_32: if (bits_per_sample & BTAV_A2DP_CODEC_BITS_PER_SAMPLE_32) { p_codec_config->bits_per_sample = BTAV_A2DP_CODEC_BITS_PER_SAMPLE_32; p_result->bits_per_sample = BTAV_A2DP_CODEC_BITS_PER_SAMPLE_32; return true; } break; case BTAV_A2DP_CODEC_BITS_PER_SAMPLE_NONE: break; } return false; } // // Selects the best channel mode from |channelMode|. // The result is stored in |p_result| and |p_codec_config|. // Returns true if a selection was made, otherwise false. // static bool select_best_channel_mode(uint8_t channelMode, tA2DP_OPUS_CIE* p_result, btav_a2dp_codec_config_t* p_codec_config) { if (channelMode & A2DP_OPUS_CHANNEL_MODE_STEREO) { p_result->channelMode = A2DP_OPUS_CHANNEL_MODE_STEREO; p_codec_config->channel_mode = BTAV_A2DP_CODEC_CHANNEL_MODE_STEREO; return true; } if (channelMode & A2DP_OPUS_CHANNEL_MODE_MONO) { p_result->channelMode = A2DP_OPUS_CHANNEL_MODE_MONO; p_codec_config->channel_mode = BTAV_A2DP_CODEC_CHANNEL_MODE_MONO; return true; } return false; } // // Selects the audio channel mode from |p_codec_audio_config|. // |channelMode| contains the capability. // The result is stored in |p_result| and |p_codec_config|. // Returns true if a selection was made, otherwise false. // static bool select_audio_channel_mode( const btav_a2dp_codec_config_t* p_codec_audio_config, uint8_t channelMode, tA2DP_OPUS_CIE* p_result, btav_a2dp_codec_config_t* p_codec_config) { switch (p_codec_audio_config->channel_mode) { case BTAV_A2DP_CODEC_CHANNEL_MODE_MONO: if (channelMode & A2DP_OPUS_CHANNEL_MODE_MONO) { p_result->channelMode = A2DP_OPUS_CHANNEL_MODE_MONO; p_codec_config->channel_mode = BTAV_A2DP_CODEC_CHANNEL_MODE_MONO; return true; } break; case BTAV_A2DP_CODEC_CHANNEL_MODE_STEREO: if (channelMode & A2DP_OPUS_CHANNEL_MODE_STEREO) { p_result->channelMode = A2DP_OPUS_CHANNEL_MODE_STEREO; p_codec_config->channel_mode = BTAV_A2DP_CODEC_CHANNEL_MODE_STEREO; return true; } break; case BTAV_A2DP_CODEC_CHANNEL_MODE_NONE: break; } return false; } bool A2dpCodecConfigOpusBase::setCodecConfig(const uint8_t* p_peer_codec_info, bool is_capability, uint8_t* p_result_codec_config) { std::lock_guard lock(codec_mutex_); tA2DP_OPUS_CIE peer_info_cie; tA2DP_OPUS_CIE result_config_cie; uint8_t channelMode; uint8_t sampleRate; uint8_t frameSize; btav_a2dp_codec_bits_per_sample_t bits_per_sample; const tA2DP_OPUS_CIE* p_a2dp_opus_caps = (is_source_) ? &a2dp_opus_source_caps : &a2dp_opus_sink_caps; btav_a2dp_codec_config_t device_codec_config_ = getCodecConfig(); LOG_INFO( "AudioManager stream config %d sample rate %d bit depth %d channel " "mode", device_codec_config_.sample_rate, device_codec_config_.bits_per_sample, device_codec_config_.channel_mode); // Save the internal state btav_a2dp_codec_config_t saved_codec_config = codec_config_; btav_a2dp_codec_config_t saved_codec_capability = codec_capability_; btav_a2dp_codec_config_t saved_codec_selectable_capability = codec_selectable_capability_; btav_a2dp_codec_config_t saved_codec_user_config = codec_user_config_; btav_a2dp_codec_config_t saved_codec_audio_config = codec_audio_config_; uint8_t saved_ota_codec_config[AVDT_CODEC_SIZE]; uint8_t saved_ota_codec_peer_capability[AVDT_CODEC_SIZE]; uint8_t saved_ota_codec_peer_config[AVDT_CODEC_SIZE]; memcpy(saved_ota_codec_config, ota_codec_config_, sizeof(ota_codec_config_)); memcpy(saved_ota_codec_peer_capability, ota_codec_peer_capability_, sizeof(ota_codec_peer_capability_)); memcpy(saved_ota_codec_peer_config, ota_codec_peer_config_, sizeof(ota_codec_peer_config_)); tA2DP_STATUS status = A2DP_ParseInfoOpus(&peer_info_cie, p_peer_codec_info, is_capability); if (status != A2DP_SUCCESS) { LOG_ERROR("can't parse peer's capabilities: error = %d", status); goto fail; } // // Build the preferred configuration // memset(&result_config_cie, 0, sizeof(result_config_cie)); result_config_cie.vendorId = p_a2dp_opus_caps->vendorId; result_config_cie.codecId = p_a2dp_opus_caps->codecId; // // Select the sample frequency // sampleRate = p_a2dp_opus_caps->sampleRate & peer_info_cie.sampleRate; codec_config_.sample_rate = BTAV_A2DP_CODEC_SAMPLE_RATE_NONE; switch (codec_user_config_.sample_rate) { case BTAV_A2DP_CODEC_SAMPLE_RATE_48000: if (sampleRate & A2DP_OPUS_SAMPLING_FREQ_48000) { result_config_cie.sampleRate = A2DP_OPUS_SAMPLING_FREQ_48000; codec_capability_.sample_rate = codec_user_config_.sample_rate; codec_config_.sample_rate = codec_user_config_.sample_rate; } break; case BTAV_A2DP_CODEC_SAMPLE_RATE_44100: case BTAV_A2DP_CODEC_SAMPLE_RATE_88200: case BTAV_A2DP_CODEC_SAMPLE_RATE_96000: case BTAV_A2DP_CODEC_SAMPLE_RATE_176400: case BTAV_A2DP_CODEC_SAMPLE_RATE_192000: case BTAV_A2DP_CODEC_SAMPLE_RATE_16000: case BTAV_A2DP_CODEC_SAMPLE_RATE_24000: case BTAV_A2DP_CODEC_SAMPLE_RATE_NONE: codec_capability_.sample_rate = BTAV_A2DP_CODEC_SAMPLE_RATE_NONE; codec_config_.sample_rate = BTAV_A2DP_CODEC_SAMPLE_RATE_NONE; break; } // Select the sample frequency if there is no user preference do { // Compute the selectable capability if (sampleRate & A2DP_OPUS_SAMPLING_FREQ_48000) { codec_selectable_capability_.sample_rate |= BTAV_A2DP_CODEC_SAMPLE_RATE_48000; } if (codec_config_.sample_rate != BTAV_A2DP_CODEC_SAMPLE_RATE_NONE) break; // Compute the common capability if (sampleRate & A2DP_OPUS_SAMPLING_FREQ_48000) codec_capability_.sample_rate |= BTAV_A2DP_CODEC_SAMPLE_RATE_48000; // No user preference - try the codec audio config if (select_audio_sample_rate(&codec_audio_config_, sampleRate, &result_config_cie, &codec_config_)) { break; } // No user preference - try the default config if (select_best_sample_rate( a2dp_opus_default_config.sampleRate & peer_info_cie.sampleRate, &result_config_cie, &codec_config_)) { break; } // No user preference - use the best match if (select_best_sample_rate(sampleRate, &result_config_cie, &codec_config_)) { break; } } while (false); if (codec_config_.sample_rate == BTAV_A2DP_CODEC_SAMPLE_RATE_NONE) { LOG_ERROR( "cannot match sample frequency: local caps = 0x%x " "peer info = 0x%x", p_a2dp_opus_caps->sampleRate, peer_info_cie.sampleRate); goto fail; } // // Select the bits per sample // // NOTE: this information is NOT included in the Opus A2DP codec description // that is sent OTA. bits_per_sample = p_a2dp_opus_caps->bits_per_sample; codec_config_.bits_per_sample = BTAV_A2DP_CODEC_BITS_PER_SAMPLE_NONE; switch (codec_user_config_.bits_per_sample) { case BTAV_A2DP_CODEC_BITS_PER_SAMPLE_16: if (bits_per_sample & BTAV_A2DP_CODEC_BITS_PER_SAMPLE_16) { result_config_cie.bits_per_sample = codec_user_config_.bits_per_sample; codec_capability_.bits_per_sample = codec_user_config_.bits_per_sample; codec_config_.bits_per_sample = codec_user_config_.bits_per_sample; } break; case BTAV_A2DP_CODEC_BITS_PER_SAMPLE_24: if (bits_per_sample & BTAV_A2DP_CODEC_BITS_PER_SAMPLE_24) { result_config_cie.bits_per_sample = codec_user_config_.bits_per_sample; codec_capability_.bits_per_sample = codec_user_config_.bits_per_sample; codec_config_.bits_per_sample = codec_user_config_.bits_per_sample; } break; case BTAV_A2DP_CODEC_BITS_PER_SAMPLE_32: if (bits_per_sample & BTAV_A2DP_CODEC_BITS_PER_SAMPLE_32) { result_config_cie.bits_per_sample = codec_user_config_.bits_per_sample; codec_capability_.bits_per_sample = codec_user_config_.bits_per_sample; codec_config_.bits_per_sample = codec_user_config_.bits_per_sample; } break; case BTAV_A2DP_CODEC_BITS_PER_SAMPLE_NONE: result_config_cie.bits_per_sample = BTAV_A2DP_CODEC_BITS_PER_SAMPLE_NONE; codec_capability_.bits_per_sample = BTAV_A2DP_CODEC_BITS_PER_SAMPLE_NONE; codec_config_.bits_per_sample = BTAV_A2DP_CODEC_BITS_PER_SAMPLE_NONE; break; } // Select the bits per sample if there is no user preference do { // Compute the selectable capability codec_selectable_capability_.bits_per_sample = p_a2dp_opus_caps->bits_per_sample; if (codec_config_.bits_per_sample != BTAV_A2DP_CODEC_BITS_PER_SAMPLE_NONE) break; // Compute the common capability codec_capability_.bits_per_sample = bits_per_sample; // No user preference - try yhe codec audio config if (select_audio_bits_per_sample(&codec_audio_config_, p_a2dp_opus_caps->bits_per_sample, &result_config_cie, &codec_config_)) { break; } // No user preference - try the default config if (select_best_bits_per_sample(a2dp_opus_default_config.bits_per_sample, &result_config_cie, &codec_config_)) { break; } // No user preference - use the best match if (select_best_bits_per_sample(p_a2dp_opus_caps->bits_per_sample, &result_config_cie, &codec_config_)) { break; } } while (false); if (codec_config_.bits_per_sample == BTAV_A2DP_CODEC_BITS_PER_SAMPLE_NONE) { LOG_ERROR( "cannot match bits per sample: default = 0x%x " "user preference = 0x%x", a2dp_opus_default_config.bits_per_sample, codec_user_config_.bits_per_sample); goto fail; } // // Select the channel mode // channelMode = p_a2dp_opus_caps->channelMode & peer_info_cie.channelMode; codec_config_.channel_mode = BTAV_A2DP_CODEC_CHANNEL_MODE_NONE; switch (codec_user_config_.channel_mode) { case BTAV_A2DP_CODEC_CHANNEL_MODE_MONO: if (channelMode & A2DP_OPUS_CHANNEL_MODE_MONO) { result_config_cie.channelMode = A2DP_OPUS_CHANNEL_MODE_MONO; codec_capability_.channel_mode = codec_user_config_.channel_mode; codec_config_.channel_mode = codec_user_config_.channel_mode; } break; case BTAV_A2DP_CODEC_CHANNEL_MODE_STEREO: if (channelMode & A2DP_OPUS_CHANNEL_MODE_STEREO) { result_config_cie.channelMode = A2DP_OPUS_CHANNEL_MODE_STEREO; codec_capability_.channel_mode = codec_user_config_.channel_mode; codec_config_.channel_mode = codec_user_config_.channel_mode; } break; case BTAV_A2DP_CODEC_CHANNEL_MODE_NONE: codec_capability_.channel_mode = BTAV_A2DP_CODEC_CHANNEL_MODE_NONE; codec_config_.channel_mode = BTAV_A2DP_CODEC_CHANNEL_MODE_NONE; break; } // Select the channel mode if there is no user preference do { // Compute the selectable capability if (channelMode & A2DP_OPUS_CHANNEL_MODE_MONO) { codec_selectable_capability_.channel_mode |= BTAV_A2DP_CODEC_CHANNEL_MODE_MONO; } if (channelMode & A2DP_OPUS_CHANNEL_MODE_STEREO) { codec_selectable_capability_.channel_mode |= BTAV_A2DP_CODEC_CHANNEL_MODE_STEREO; } if (codec_config_.channel_mode != BTAV_A2DP_CODEC_CHANNEL_MODE_NONE) break; // Compute the common capability if (channelMode & A2DP_OPUS_CHANNEL_MODE_MONO) codec_capability_.channel_mode |= BTAV_A2DP_CODEC_CHANNEL_MODE_MONO; if (channelMode & A2DP_OPUS_CHANNEL_MODE_STEREO) { codec_capability_.channel_mode |= BTAV_A2DP_CODEC_CHANNEL_MODE_STEREO; } // No user preference - try the codec audio config if (select_audio_channel_mode(&codec_audio_config_, channelMode, &result_config_cie, &codec_config_)) { break; } // No user preference - try the default config if (select_best_channel_mode( a2dp_opus_default_config.channelMode & peer_info_cie.channelMode, &result_config_cie, &codec_config_)) { break; } // No user preference - use the best match if (select_best_channel_mode(channelMode, &result_config_cie, &codec_config_)) { break; } } while (false); if (codec_config_.channel_mode == BTAV_A2DP_CODEC_CHANNEL_MODE_NONE) { LOG_ERROR( "cannot match channel mode: local caps = 0x%x " "peer info = 0x%x", p_a2dp_opus_caps->channelMode, peer_info_cie.channelMode); goto fail; } // // Select the frame size // frameSize = p_a2dp_opus_caps->future1 & peer_info_cie.future1; codec_config_.codec_specific_1 = BTAV_A2DP_CODEC_FRAME_SIZE_NONE; switch (codec_user_config_.codec_specific_1) { case BTAV_A2DP_CODEC_FRAME_SIZE_20MS: if (frameSize & A2DP_OPUS_20MS_FRAMESIZE) { result_config_cie.future1 = A2DP_OPUS_20MS_FRAMESIZE; codec_capability_.codec_specific_1 = codec_user_config_.codec_specific_1; codec_config_.codec_specific_1 = codec_user_config_.codec_specific_1; } break; case BTAV_A2DP_CODEC_FRAME_SIZE_10MS: if (frameSize & A2DP_OPUS_10MS_FRAMESIZE) { result_config_cie.future1 = A2DP_OPUS_10MS_FRAMESIZE; codec_capability_.codec_specific_1 = codec_user_config_.codec_specific_1; codec_config_.codec_specific_1 = codec_user_config_.codec_specific_1; } break; case BTAV_A2DP_CODEC_FRAME_SIZE_NONE: codec_capability_.codec_specific_1 = BTAV_A2DP_CODEC_FRAME_SIZE_NONE; codec_config_.codec_specific_1 = BTAV_A2DP_CODEC_FRAME_SIZE_NONE; break; } // No user preference - set default value codec_config_.codec_specific_1 = BTAV_A2DP_CODEC_FRAME_SIZE_20MS; result_config_cie.future1 = A2DP_OPUS_20MS_FRAMESIZE; result_config_cie.future3 = 0x00; if (codec_config_.codec_specific_1 == BTAV_A2DP_CODEC_FRAME_SIZE_NONE) { LOG_ERROR( "cannot match frame size: local caps = 0x%x " "peer info = 0x%x", p_a2dp_opus_caps->future1, peer_info_cie.future1); goto fail; } if (A2DP_BuildInfoOpus(AVDT_MEDIA_TYPE_AUDIO, &result_config_cie, p_result_codec_config) != A2DP_SUCCESS) { LOG_ERROR("failed to BuildInfoOpus for result_config_cie"); goto fail; } // // Copy the codec-specific fields if they are not zero // if (codec_user_config_.codec_specific_1 != 0) codec_config_.codec_specific_1 = codec_user_config_.codec_specific_1; if (codec_user_config_.codec_specific_2 != 0) codec_config_.codec_specific_2 = codec_user_config_.codec_specific_2; if (codec_user_config_.codec_specific_3 != 0) codec_config_.codec_specific_3 = codec_user_config_.codec_specific_3; if (codec_user_config_.codec_specific_4 != 0) codec_config_.codec_specific_4 = codec_user_config_.codec_specific_4; // Create a local copy of the peer codec capability, and the // result codec config. if (is_capability) { status = A2DP_BuildInfoOpus(AVDT_MEDIA_TYPE_AUDIO, &peer_info_cie, ota_codec_peer_capability_); } else { status = A2DP_BuildInfoOpus(AVDT_MEDIA_TYPE_AUDIO, &peer_info_cie, ota_codec_peer_config_); } CHECK(status == A2DP_SUCCESS); status = A2DP_BuildInfoOpus(AVDT_MEDIA_TYPE_AUDIO, &result_config_cie, ota_codec_config_); CHECK(status == A2DP_SUCCESS); return true; fail: // Restore the internal state codec_config_ = saved_codec_config; codec_capability_ = saved_codec_capability; codec_selectable_capability_ = saved_codec_selectable_capability; codec_user_config_ = saved_codec_user_config; codec_audio_config_ = saved_codec_audio_config; memcpy(ota_codec_config_, saved_ota_codec_config, sizeof(ota_codec_config_)); memcpy(ota_codec_peer_capability_, saved_ota_codec_peer_capability, sizeof(ota_codec_peer_capability_)); memcpy(ota_codec_peer_config_, saved_ota_codec_peer_config, sizeof(ota_codec_peer_config_)); return false; } bool A2dpCodecConfigOpusBase::setPeerCodecCapabilities( const uint8_t* p_peer_codec_capabilities) { std::lock_guard lock(codec_mutex_); tA2DP_OPUS_CIE peer_info_cie; uint8_t channelMode; uint8_t sampleRate; const tA2DP_OPUS_CIE* p_a2dp_opus_caps = (is_source_) ? &a2dp_opus_source_caps : &a2dp_opus_sink_caps; // Save the internal state btav_a2dp_codec_config_t saved_codec_selectable_capability = codec_selectable_capability_; uint8_t saved_ota_codec_peer_capability[AVDT_CODEC_SIZE]; memcpy(saved_ota_codec_peer_capability, ota_codec_peer_capability_, sizeof(ota_codec_peer_capability_)); tA2DP_STATUS status = A2DP_ParseInfoOpus(&peer_info_cie, p_peer_codec_capabilities, true); if (status != A2DP_SUCCESS) { LOG_ERROR("can't parse peer's capabilities: error = %d", status); goto fail; } // Compute the selectable capability - sample rate sampleRate = p_a2dp_opus_caps->sampleRate & peer_info_cie.sampleRate; if (sampleRate & A2DP_OPUS_SAMPLING_FREQ_48000) { codec_selectable_capability_.sample_rate |= BTAV_A2DP_CODEC_SAMPLE_RATE_48000; } // Compute the selectable capability - bits per sample codec_selectable_capability_.bits_per_sample = p_a2dp_opus_caps->bits_per_sample; // Compute the selectable capability - channel mode channelMode = p_a2dp_opus_caps->channelMode & peer_info_cie.channelMode; if (channelMode & A2DP_OPUS_CHANNEL_MODE_MONO) { codec_selectable_capability_.channel_mode |= BTAV_A2DP_CODEC_CHANNEL_MODE_MONO; } if (channelMode & A2DP_OPUS_CHANNEL_MODE_STEREO) { codec_selectable_capability_.channel_mode |= BTAV_A2DP_CODEC_CHANNEL_MODE_STEREO; } LOG_INFO("BuildInfoOpus for peer info cie for ota caps"); status = A2DP_BuildInfoOpus(AVDT_MEDIA_TYPE_AUDIO, &peer_info_cie, ota_codec_peer_capability_); CHECK(status == A2DP_SUCCESS); return true; fail: // Restore the internal state codec_selectable_capability_ = saved_codec_selectable_capability; memcpy(ota_codec_peer_capability_, saved_ota_codec_peer_capability, sizeof(ota_codec_peer_capability_)); return false; } A2dpCodecConfigOpusSink::A2dpCodecConfigOpusSink( btav_a2dp_codec_priority_t codec_priority) : A2dpCodecConfigOpusBase(BTAV_A2DP_CODEC_INDEX_SINK_OPUS, A2DP_VendorCodecIndexStrOpusSink(), codec_priority, false) {} A2dpCodecConfigOpusSink::~A2dpCodecConfigOpusSink() {} bool A2dpCodecConfigOpusSink::init() { if (!isValid()) return false; return true; } bool A2dpCodecConfigOpusSink::useRtpHeaderMarkerBit() const { return false; } bool A2dpCodecConfigOpusSink::updateEncoderUserConfig( UNUSED_ATTR const tA2DP_ENCODER_INIT_PEER_PARAMS* p_peer_params, UNUSED_ATTR bool* p_restart_input, UNUSED_ATTR bool* p_restart_output, UNUSED_ATTR bool* p_config_updated) { return false; }