packages/modules/NeuralNetworks/runtime/test/fuzzing/operation_signatures/Broadcast.cpp

183 lines
10 KiB
C++
Raw Normal View History

2025-08-25 08:38:42 +08:00
/*
* Copyright (C) 2019 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <algorithm>
#include "fuzzing/operation_signatures/OperationSignatureUtils.h"
namespace android {
namespace nn {
namespace fuzzing_test {
static void broadcastOpConstructor(TestOperandType dataType, uint32_t rank, RandomOperation* op) {
const uint32_t rank2 = getUniform(1u, rank), rankDiff = rank - rank2;
op->inputs[0]->dimensions.resize(rank);
op->inputs[1]->dimensions.resize(rank2);
op->outputs[0]->dimensions.resize(rank);
for (uint32_t i = 0; i < rank; i++) {
op->outputs[0]->dimensions[i] = RandomVariableType::FREE;
if (i < rankDiff) {
op->inputs[0]->dimensions[i] = op->outputs[0]->dimensions[i];
} else {
if (getBernoulli(0.5f)) {
// No broadcast on this dimension.
op->inputs[0]->dimensions[i] = op->outputs[0]->dimensions[i];
op->inputs[1]->dimensions[i - rankDiff] = op->outputs[0]->dimensions[i];
} else if (getBernoulli(0.5f)) {
// input0 broadcast on this dimension.
op->inputs[0]->dimensions[i] = 1;
op->inputs[1]->dimensions[i - rankDiff] = op->outputs[0]->dimensions[i];
} else {
// input1 broadcast on this dimension.
op->inputs[0]->dimensions[i] = op->outputs[0]->dimensions[i];
op->inputs[1]->dimensions[i - rankDiff] = 1;
}
}
}
if (getBernoulli(0.5f)) {
// Swap the dimensions to test the case that inpuy 1 has a larger rank than input0.
op->inputs[0]->dimensions.swap(op->inputs[1]->dimensions);
}
// MUL requires output.scale > input0.scale * input1.scale.
if (isQuantizedType(dataType) && op->opType == TestOperationType::MUL) {
float minScale = op->inputs[0]->scale * op->inputs[1]->scale;
op->outputs[0]->scale = getUniform(minScale, minScale * 5);
}
// DIV and POW may produce Inf output values. We should not connect this output tensor to the
// input of another operation.
if (op->opType == TestOperationType::DIV || op->opType == TestOperationType::POW) {
op->outputs[0]->doNotConnect = true;
}
// For ADD/MUL/SUB/DIV with TENSOR_INT32 tensors, the activation must be "NONE".
if ((op->opType == TestOperationType::ADD || op->opType == TestOperationType::MUL ||
op->opType == TestOperationType::SUB || op->opType == TestOperationType::DIV) &&
dataType == TestOperandType::TENSOR_INT32) {
op->inputs[2]->setScalarValue(0);
}
if (op->opType == TestOperationType::DIV) {
op->inputs[1]->valueProperties = RandomOperand::NON_ZERO;
}
if (op->opType == TestOperationType::POW) {
op->inputs[0]->valueProperties = RandomOperand::NON_NEGATIVE;
}
}
// For broadcast operations with fused activation.
#define DEFINE_BROADCAST_WITH_ACT_SIGNATURE(op, ver, ...) \
DEFINE_OPERATION_SIGNATURE(op##_##ver){ \
.opType = TestOperationType::op, \
.supportedDataTypes = {__VA_ARGS__}, \
.supportedRanks = {1, 2, 3, 4}, \
.version = TestHalVersion::ver, \
.inputs = {INPUT_DEFAULT, INPUT_DEFAULT, \
PARAMETER_CHOICE(TestOperandType::INT32, 0, 1, 2, 3)}, \
.outputs = {OUTPUT_DEFAULT}, \
.constructor = broadcastOpConstructor};
// Arithmetic with activation.
DEFINE_BROADCAST_WITH_ACT_SIGNATURE(ADD, V1_0, TestOperandType::TENSOR_FLOAT32,
TestOperandType::TENSOR_QUANT8_ASYMM);
DEFINE_BROADCAST_WITH_ACT_SIGNATURE(MUL, V1_0, TestOperandType::TENSOR_FLOAT32,
TestOperandType::TENSOR_QUANT8_ASYMM);
DEFINE_BROADCAST_WITH_ACT_SIGNATURE(SUB, V1_1, TestOperandType::TENSOR_FLOAT32);
DEFINE_BROADCAST_WITH_ACT_SIGNATURE(DIV, V1_1, TestOperandType::TENSOR_FLOAT32);
DEFINE_BROADCAST_WITH_ACT_SIGNATURE(ADD, V1_2, TestOperandType::TENSOR_FLOAT16);
DEFINE_BROADCAST_WITH_ACT_SIGNATURE(MUL, V1_2, TestOperandType::TENSOR_FLOAT16);
DEFINE_BROADCAST_WITH_ACT_SIGNATURE(SUB, V1_2, TestOperandType::TENSOR_FLOAT16,
TestOperandType::TENSOR_QUANT8_ASYMM);
DEFINE_BROADCAST_WITH_ACT_SIGNATURE(DIV, V1_2, TestOperandType::TENSOR_FLOAT16);
DEFINE_BROADCAST_WITH_ACT_SIGNATURE(ADD, V1_3, TestOperandType::TENSOR_QUANT8_ASYMM_SIGNED,
TestOperandType::TENSOR_INT32);
DEFINE_BROADCAST_WITH_ACT_SIGNATURE(MUL, V1_3, TestOperandType::TENSOR_QUANT8_ASYMM_SIGNED,
TestOperandType::TENSOR_INT32);
DEFINE_BROADCAST_WITH_ACT_SIGNATURE(SUB, V1_3, TestOperandType::TENSOR_QUANT8_ASYMM_SIGNED,
TestOperandType::TENSOR_INT32);
DEFINE_BROADCAST_WITH_ACT_SIGNATURE(DIV, V1_3, TestOperandType::TENSOR_INT32);
// For broadcast ops with output of the same data type as inputs.
#define DEFINE_BROADCAST_SIGNATURE(op, ver, ...) \
DEFINE_OPERATION_SIGNATURE(op##_##ver){.opType = TestOperationType::op, \
.supportedDataTypes = {__VA_ARGS__}, \
.supportedRanks = {1, 2, 3, 4, 5}, \
.version = TestHalVersion::ver, \
.inputs = {INPUT_DEFAULT, INPUT_DEFAULT}, \
.outputs = {OUTPUT_DEFAULT}, \
.constructor = broadcastOpConstructor};
// Arithmetic without activation.
DEFINE_BROADCAST_SIGNATURE(POW, V1_2, TestOperandType::TENSOR_FLOAT32,
TestOperandType::TENSOR_FLOAT16);
DEFINE_BROADCAST_SIGNATURE(PRELU, V1_2, TestOperandType::TENSOR_FLOAT32,
TestOperandType::TENSOR_FLOAT16, TestOperandType::TENSOR_QUANT8_ASYMM);
DEFINE_BROADCAST_SIGNATURE(MAXIMUM, V1_2, TestOperandType::TENSOR_FLOAT32,
TestOperandType::TENSOR_FLOAT16, TestOperandType::TENSOR_QUANT8_ASYMM,
TestOperandType::TENSOR_INT32);
DEFINE_BROADCAST_SIGNATURE(MINIMUM, V1_2, TestOperandType::TENSOR_FLOAT32,
TestOperandType::TENSOR_FLOAT16, TestOperandType::TENSOR_QUANT8_ASYMM,
TestOperandType::TENSOR_INT32);
DEFINE_BROADCAST_SIGNATURE(PRELU, V1_3, TestOperandType::TENSOR_QUANT8_ASYMM_SIGNED);
DEFINE_BROADCAST_SIGNATURE(MAXIMUM, V1_3, TestOperandType::TENSOR_QUANT8_ASYMM_SIGNED);
DEFINE_BROADCAST_SIGNATURE(MINIMUM, V1_3, TestOperandType::TENSOR_QUANT8_ASYMM_SIGNED);
// Logical
DEFINE_BROADCAST_SIGNATURE(LOGICAL_AND, V1_2, TestOperandType::TENSOR_BOOL8);
DEFINE_BROADCAST_SIGNATURE(LOGICAL_OR, V1_2, TestOperandType::TENSOR_BOOL8);
// Comparisons
#define DEFINE_COMPARISON_SIGNATURE(op, ver, ...) \
DEFINE_OPERATION_SIGNATURE(op##_##ver){ \
.opType = TestOperationType::op, \
.supportedDataTypes = {__VA_ARGS__}, \
.supportedRanks = {1, 2, 3, 4}, \
.version = TestHalVersion::ver, \
.inputs = {INPUT_DEFAULT, INPUT_DEFAULT}, \
.outputs = {OUTPUT_TYPED(TestOperandType::TENSOR_BOOL8)}, \
.constructor = broadcastOpConstructor};
DEFINE_COMPARISON_SIGNATURE(EQUAL, V1_2, TestOperandType::TENSOR_FLOAT32,
TestOperandType::TENSOR_FLOAT16, TestOperandType::TENSOR_INT32,
TestOperandType::TENSOR_QUANT8_ASYMM, TestOperandType::TENSOR_BOOL8);
DEFINE_COMPARISON_SIGNATURE(GREATER, V1_2, TestOperandType::TENSOR_FLOAT32,
TestOperandType::TENSOR_FLOAT16, TestOperandType::TENSOR_INT32,
TestOperandType::TENSOR_QUANT8_ASYMM);
DEFINE_COMPARISON_SIGNATURE(GREATER_EQUAL, V1_2, TestOperandType::TENSOR_FLOAT32,
TestOperandType::TENSOR_FLOAT16, TestOperandType::TENSOR_INT32,
TestOperandType::TENSOR_QUANT8_ASYMM);
DEFINE_COMPARISON_SIGNATURE(LESS, V1_2, TestOperandType::TENSOR_FLOAT32,
TestOperandType::TENSOR_FLOAT16, TestOperandType::TENSOR_INT32,
TestOperandType::TENSOR_QUANT8_ASYMM);
DEFINE_COMPARISON_SIGNATURE(LESS_EQUAL, V1_2, TestOperandType::TENSOR_FLOAT32,
TestOperandType::TENSOR_FLOAT16, TestOperandType::TENSOR_INT32,
TestOperandType::TENSOR_QUANT8_ASYMM);
DEFINE_COMPARISON_SIGNATURE(NOT_EQUAL, V1_2, TestOperandType::TENSOR_FLOAT32,
TestOperandType::TENSOR_FLOAT16, TestOperandType::TENSOR_INT32,
TestOperandType::TENSOR_QUANT8_ASYMM, TestOperandType::TENSOR_BOOL8);
DEFINE_COMPARISON_SIGNATURE(EQUAL, V1_3, TestOperandType::TENSOR_QUANT8_ASYMM_SIGNED);
DEFINE_COMPARISON_SIGNATURE(GREATER, V1_3, TestOperandType::TENSOR_QUANT8_ASYMM_SIGNED);
DEFINE_COMPARISON_SIGNATURE(GREATER_EQUAL, V1_3, TestOperandType::TENSOR_QUANT8_ASYMM_SIGNED);
DEFINE_COMPARISON_SIGNATURE(LESS, V1_3, TestOperandType::TENSOR_QUANT8_ASYMM_SIGNED);
DEFINE_COMPARISON_SIGNATURE(LESS_EQUAL, V1_3, TestOperandType::TENSOR_QUANT8_ASYMM_SIGNED);
DEFINE_COMPARISON_SIGNATURE(NOT_EQUAL, V1_3, TestOperandType::TENSOR_QUANT8_ASYMM_SIGNED);
} // namespace fuzzing_test
} // namespace nn
} // namespace android