packages/modules/NeuralNetworks/runtime/test/specs/experimental/densify_2.mod.py

58 lines
2.5 KiB
Python
Raw Permalink Normal View History

2025-08-25 08:38:42 +08:00
# model
model = Model()
sparseData = Input("sparseData", "TENSOR_FLOAT32", "{16}")
traversalOrder = Parameter("traversalOrder", "TENSOR_INT32", "{4}", [0, 1, 2, 3])
blockMap = Parameter("blockMap", "TENSOR_INT32", "{2}", [0, 1])
dimFormat = Parameter("dimFormat", "TENSOR_INT32", "{4}", [0, 0, 0, 0])
dimensions = Parameter("dimensions", "TENSOR_INT32", "{4}", [2, 2, 2, 2])
d0ArrSegments = Parameter("d0ArrSegments", "TENSOR_INT32", "{0}", [])
d0ArrIndices = Parameter("d0ArrIndices", "TENSOR_INT32", "{0}", [])
d1ArrSegments = Parameter("d1ArrSegments", "TENSOR_INT32", "{0}", [])
d1ArrIndices = Parameter("d1ArrIndices", "TENSOR_INT32", "{0}", [])
d2ArrSegments = Parameter("d2ArrSegments", "TENSOR_INT32", "{0}", [])
d2ArrIndices = Parameter("d2ArrIndices", "TENSOR_INT32", "{0}", [])
d3ArrSegments = Parameter("d3ArrSegments", "TENSOR_INT32", "{0}", [])
d3ArrIndices = Parameter("d3ArrIndices", "TENSOR_INT32", "{0}", [])
denseOut = Output("denseOut", "TENSOR_FLOAT32", "{4, 4}")
model = model.Operation("DENSIFY", sparseData, traversalOrder, blockMap,
dimFormat, dimensions, d0ArrSegments, d0ArrIndices, d1ArrSegments,
d1ArrIndices, d2ArrSegments, d2ArrIndices, d3ArrSegments,
d3ArrIndices).To(denseOut)
# Example 1. Input in operand 0,
input0 = {sparseData: # input 0
[1.0, 0.0, 0.0, 4.0, 2.0, 3.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 5.0, 0.0, 0.0, 6.0]}
output0 = {denseOut: # output 0
[1.0, 0.0, 2.0, 3.0, 0.0, 4.0, 0.0, 0.0, 0.0, 0.0, 5.0, 0.0, 0.0, 0.0, 0.0, 6.0]}
quant8_symm = DataTypeConverter().Identify({
sparseData: ("TENSOR_QUANT8_SYMM", 7.0),
denseOut: ("TENSOR_QUANT8_SYMM", 7.0)
})
quant8_asymm = DataTypeConverter().Identify({
sparseData: ("TENSOR_QUANT8_ASYMM", 0.5, 3),
denseOut: ("TENSOR_QUANT8_ASYMM", 0.5, 3)
})
quant8_asymm_signed = DataTypeConverter().Identify({
sparseData: ("TENSOR_QUANT8_ASYMM_SIGNED", 1.5, -5),
denseOut: ("TENSOR_QUANT8_ASYMM_SIGNED", 1.5, -5)
})
quant16_symm = DataTypeConverter().Identify({
sparseData: ("TENSOR_QUANT16_SYMM", 6.0),
denseOut: ("TENSOR_QUANT16_SYMM", 6.0)
})
quant16_asymm = DataTypeConverter().Identify({
sparseData: ("TENSOR_QUANT16_ASYMM", 2.0, 3),
denseOut: ("TENSOR_QUANT16_ASYMM", 2.0, 3)
})
# Instantiate an example
Example((input0, output0)).AddVariations("relaxed", "float16", "int32", quant8_symm,
quant8_asymm, quant8_asymm_signed, quant16_symm,
quant16_asymm)