100 lines
3.1 KiB
Python
100 lines
3.1 KiB
Python
|
#
|
||
|
# Copyright (C) 2018 The Android Open Source Project
|
||
|
#
|
||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||
|
# you may not use this file except in compliance with the License.
|
||
|
# You may obtain a copy of the License at
|
||
|
#
|
||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||
|
#
|
||
|
# Unless required by applicable law or agreed to in writing, software
|
||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
|
# See the License for the specific language governing permissions and
|
||
|
# limitations under the License.
|
||
|
#
|
||
|
|
||
|
import itertools
|
||
|
import collections
|
||
|
|
||
|
Operand = collections.namedtuple(
|
||
|
"Operand", ["name", "as_input", "as_output", "data", "supports_relaxation"])
|
||
|
|
||
|
operands = [
|
||
|
Operand(
|
||
|
name="float16",
|
||
|
as_input=Input("input0", "TENSOR_FLOAT16", "{2, 3}"),
|
||
|
as_output=Output("output0", "TENSOR_FLOAT16", "{2, 3}"),
|
||
|
data=[1, 2, 3, 4, 5, 6],
|
||
|
supports_relaxation=False),
|
||
|
Operand(
|
||
|
name="float32",
|
||
|
as_input=Input("input0", "TENSOR_FLOAT32", "{2, 3}"),
|
||
|
as_output=Output("output0", "TENSOR_FLOAT32", "{2, 3}"),
|
||
|
data=[1, 2, 3, 4, 5, 6],
|
||
|
supports_relaxation=True),
|
||
|
Operand(
|
||
|
name="int32",
|
||
|
as_input=Input("input0", "TENSOR_INT32", "{2, 3}"),
|
||
|
as_output=Output("output0", "TENSOR_INT32", "{2, 3}"),
|
||
|
data=[1, 2, 3, 4, 5, 6],
|
||
|
supports_relaxation=False),
|
||
|
Operand(
|
||
|
name="quant8",
|
||
|
as_input=Input("input0", "TENSOR_QUANT8_ASYMM", "{2, 3}, 4.0, 100"),
|
||
|
as_output=Output("output0", "TENSOR_QUANT8_ASYMM", "{2, 3}, 4.0, 100"),
|
||
|
data=[1, 2, 3, 4, 5, 6],
|
||
|
supports_relaxation=False),
|
||
|
]
|
||
|
|
||
|
for operand1, operand2 in itertools.product(operands, operands):
|
||
|
input0 = operand1.as_input
|
||
|
output0 = operand2.as_output
|
||
|
|
||
|
model = Model().Operation("CAST", input0).To(output0)
|
||
|
|
||
|
example = Example({
|
||
|
input0: operand1.data,
|
||
|
output0: operand2.data,
|
||
|
}, model=model, name='{}_to_{}'.format(operand1.name, operand2.name))
|
||
|
|
||
|
if operand1.supports_relaxation or operand2.supports_relaxation:
|
||
|
example.AddRelaxed()
|
||
|
|
||
|
|
||
|
# Test overflow and underflow.
|
||
|
operands = [
|
||
|
Operand(
|
||
|
name="float16",
|
||
|
as_input=Input("input0", "TENSOR_FLOAT16", "{2}"),
|
||
|
as_output=None,
|
||
|
data=[-1, 256],
|
||
|
supports_relaxation=False),
|
||
|
Operand(
|
||
|
name="float32",
|
||
|
as_input=Input("input0", "TENSOR_FLOAT32", "{2}"),
|
||
|
as_output=None,
|
||
|
data=[-1, 256],
|
||
|
supports_relaxation=True),
|
||
|
Operand(
|
||
|
name="int32",
|
||
|
as_input=Input("input0", "TENSOR_INT32", "{2}"),
|
||
|
as_output=None,
|
||
|
data=[-1, 256],
|
||
|
supports_relaxation=False),
|
||
|
]
|
||
|
|
||
|
for operand1 in operands:
|
||
|
input0 = operand1.as_input
|
||
|
output0 = Output("output0", "TENSOR_QUANT8_ASYMM", "{2}, 4.0, 100")
|
||
|
|
||
|
model = Model().Operation("CAST", input0).To(output0)
|
||
|
|
||
|
example = Example({
|
||
|
input0: operand1.data,
|
||
|
output0: [0, 255],
|
||
|
}, model=model, name='{}_to_quant8_overflow'.format(operand1.name))
|
||
|
|
||
|
if operand1.supports_relaxation:
|
||
|
example.AddRelaxed()
|