packages/modules/NeuralNetworks/runtime/test/specs/AIDL_V3/reverse.mod.py

76 lines
2.6 KiB
Python
Raw Permalink Normal View History

2025-08-25 08:38:42 +08:00
#
# Copyright (C) 2021 The Android Open Source Project
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
from itertools import chain
def test(name, axis_value, input_tensor, output_tensor, input_data, output_data):
model = Model().Operation("REVERSE", input_tensor, [axis_value]).To(output_tensor)
quant8_asymm_type = ("TENSOR_QUANT8_ASYMM", 0.5, 4)
quant8_asymm = DataTypeConverter(name="quant8_asymm").Identify({
input_tensor: quant8_asymm_type,
output_tensor: quant8_asymm_type,
})
quant8_asymm_signed_type = ("TENSOR_QUANT8_ASYMM_SIGNED", 0.25, -9)
quant8_asymm_signed = DataTypeConverter(name="quant8_asymm_signed").Identify({
input_tensor: quant8_asymm_signed_type,
output_tensor: quant8_asymm_signed_type,
})
Example({
input_tensor: input_data,
output_tensor: output_data,
}, model=model, name=name).AddVariations("float16", quant8_asymm, quant8_asymm_signed, "int32")
def rrange(hi, lo):
return range(hi, lo, -1)
test(
name="dim1",
axis_value=0,
input_tensor=Input("in", ("TENSOR_FLOAT32", [3])),
output_tensor=Output("out", ("TENSOR_FLOAT32", [3])),
input_data=[6, 7, 8],
output_data=[8, 7, 6],
)
test(
name="dim3_axis0",
axis_value=0,
input_tensor=Input("in", ("TENSOR_FLOAT32", [2,3,4])),
output_tensor=Output("out", ("TENSOR_FLOAT32", [2,3,4])),
input_data = list(range(24)),
output_data = list(chain(range(12,24), range(0,12))),
)
test(
name="dim3_axis1",
axis_value=1,
input_tensor=Input("in", ("TENSOR_FLOAT32", [2,3,4])),
output_tensor=Output("out", ("TENSOR_FLOAT32", [2,3,4])),
input_data = list(range(24)),
output_data = list(chain(range(8,12), range(4,8), range(0,4),
range(20,24), range(16,20), range(12,16))),
)
test(
name="dim3_axis2",
axis_value=2,
input_tensor=Input("in", ("TENSOR_FLOAT32", [2,3,4])),
output_tensor=Output("out", ("TENSOR_FLOAT32", [2,3,4])),
input_data = list(range(24)),
output_data = list(chain(rrange(3,-1), rrange(7,3), rrange(11,7),
rrange(15,11), rrange(19,15), rrange(23,19)))
)