art/compiler/jni/quick/x86_64/calling_convention_x86_64.cc

341 lines
13 KiB
C++

/*
* Copyright (C) 2014 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "calling_convention_x86_64.h"
#include <android-base/logging.h>
#include "arch/instruction_set.h"
#include "arch/x86_64/jni_frame_x86_64.h"
#include "base/bit_utils.h"
#include "utils/x86_64/managed_register_x86_64.h"
namespace art {
namespace x86_64 {
static constexpr ManagedRegister kCoreArgumentRegisters[] = {
X86_64ManagedRegister::FromCpuRegister(RDI),
X86_64ManagedRegister::FromCpuRegister(RSI),
X86_64ManagedRegister::FromCpuRegister(RDX),
X86_64ManagedRegister::FromCpuRegister(RCX),
X86_64ManagedRegister::FromCpuRegister(R8),
X86_64ManagedRegister::FromCpuRegister(R9),
};
static_assert(kMaxIntLikeRegisterArguments == arraysize(kCoreArgumentRegisters));
static constexpr ManagedRegister kCalleeSaveRegisters[] = {
// Core registers.
X86_64ManagedRegister::FromCpuRegister(RBX),
X86_64ManagedRegister::FromCpuRegister(RBP),
X86_64ManagedRegister::FromCpuRegister(R12),
X86_64ManagedRegister::FromCpuRegister(R13),
X86_64ManagedRegister::FromCpuRegister(R14),
X86_64ManagedRegister::FromCpuRegister(R15),
// Hard float registers.
X86_64ManagedRegister::FromXmmRegister(XMM12),
X86_64ManagedRegister::FromXmmRegister(XMM13),
X86_64ManagedRegister::FromXmmRegister(XMM14),
X86_64ManagedRegister::FromXmmRegister(XMM15),
};
template <size_t size>
static constexpr uint32_t CalculateCoreCalleeSpillMask(
const ManagedRegister (&callee_saves)[size]) {
// The spilled PC gets a special marker.
uint32_t result = 1u << kNumberOfCpuRegisters;
for (auto&& r : callee_saves) {
if (r.AsX86_64().IsCpuRegister()) {
result |= (1u << r.AsX86_64().AsCpuRegister().AsRegister());
}
}
return result;
}
template <size_t size>
static constexpr uint32_t CalculateFpCalleeSpillMask(const ManagedRegister (&callee_saves)[size]) {
uint32_t result = 0u;
for (auto&& r : callee_saves) {
if (r.AsX86_64().IsXmmRegister()) {
result |= (1u << r.AsX86_64().AsXmmRegister().AsFloatRegister());
}
}
return result;
}
static constexpr uint32_t kCoreCalleeSpillMask = CalculateCoreCalleeSpillMask(kCalleeSaveRegisters);
static constexpr uint32_t kFpCalleeSpillMask = CalculateFpCalleeSpillMask(kCalleeSaveRegisters);
static constexpr ManagedRegister kNativeCalleeSaveRegisters[] = {
// Core registers.
X86_64ManagedRegister::FromCpuRegister(RBX),
X86_64ManagedRegister::FromCpuRegister(RBP),
X86_64ManagedRegister::FromCpuRegister(R12),
X86_64ManagedRegister::FromCpuRegister(R13),
X86_64ManagedRegister::FromCpuRegister(R14),
X86_64ManagedRegister::FromCpuRegister(R15),
// No callee-save float registers.
};
static constexpr uint32_t kNativeCoreCalleeSpillMask =
CalculateCoreCalleeSpillMask(kNativeCalleeSaveRegisters);
static constexpr uint32_t kNativeFpCalleeSpillMask =
CalculateFpCalleeSpillMask(kNativeCalleeSaveRegisters);
// Calling convention
ArrayRef<const ManagedRegister> X86_64JniCallingConvention::CalleeSaveScratchRegisters() const {
DCHECK(!IsCriticalNative());
// All native callee-save registers are available.
static_assert((kNativeCoreCalleeSpillMask & ~kCoreCalleeSpillMask) == 0u);
static_assert(kNativeFpCalleeSpillMask == 0u);
return ArrayRef<const ManagedRegister>(kNativeCalleeSaveRegisters);
}
ArrayRef<const ManagedRegister> X86_64JniCallingConvention::ArgumentScratchRegisters() const {
DCHECK(!IsCriticalNative());
ArrayRef<const ManagedRegister> scratch_regs(kCoreArgumentRegisters);
if (kIsDebugBuild) {
X86_64ManagedRegister return_reg = ReturnRegister().AsX86_64();
auto return_reg_overlaps = [return_reg](ManagedRegister reg) {
return return_reg.Overlaps(reg.AsX86_64());
};
CHECK(std::none_of(scratch_regs.begin(), scratch_regs.end(), return_reg_overlaps));
}
return scratch_regs;
}
static ManagedRegister ReturnRegisterForShorty(const char* shorty, bool jni ATTRIBUTE_UNUSED) {
if (shorty[0] == 'F' || shorty[0] == 'D') {
return X86_64ManagedRegister::FromXmmRegister(XMM0);
} else if (shorty[0] == 'J') {
return X86_64ManagedRegister::FromCpuRegister(RAX);
} else if (shorty[0] == 'V') {
return ManagedRegister::NoRegister();
} else {
return X86_64ManagedRegister::FromCpuRegister(RAX);
}
}
ManagedRegister X86_64ManagedRuntimeCallingConvention::ReturnRegister() const {
return ReturnRegisterForShorty(GetShorty(), false);
}
ManagedRegister X86_64JniCallingConvention::ReturnRegister() const {
return ReturnRegisterForShorty(GetShorty(), true);
}
ManagedRegister X86_64JniCallingConvention::IntReturnRegister() const {
return X86_64ManagedRegister::FromCpuRegister(RAX);
}
// Managed runtime calling convention
ManagedRegister X86_64ManagedRuntimeCallingConvention::MethodRegister() {
return X86_64ManagedRegister::FromCpuRegister(RDI);
}
bool X86_64ManagedRuntimeCallingConvention::IsCurrentParamInRegister() {
if (IsCurrentParamAFloatOrDouble()) {
return itr_float_and_doubles_ < kMaxFloatOrDoubleRegisterArguments;
} else {
size_t non_fp_arg_number = itr_args_ - itr_float_and_doubles_;
return /* method */ 1u + non_fp_arg_number < kMaxIntLikeRegisterArguments;
}
}
bool X86_64ManagedRuntimeCallingConvention::IsCurrentParamOnStack() {
return !IsCurrentParamInRegister();
}
ManagedRegister X86_64ManagedRuntimeCallingConvention::CurrentParamRegister() {
DCHECK(IsCurrentParamInRegister());
if (IsCurrentParamAFloatOrDouble()) {
// First eight float parameters are passed via XMM0..XMM7
FloatRegister fp_reg = static_cast<FloatRegister>(XMM0 + itr_float_and_doubles_);
return X86_64ManagedRegister::FromXmmRegister(fp_reg);
} else {
size_t non_fp_arg_number = itr_args_ - itr_float_and_doubles_;
return kCoreArgumentRegisters[/* method */ 1u + non_fp_arg_number];
}
}
FrameOffset X86_64ManagedRuntimeCallingConvention::CurrentParamStackOffset() {
return FrameOffset(displacement_.Int32Value() + // displacement
static_cast<size_t>(kX86_64PointerSize) + // Method ref
itr_slots_ * sizeof(uint32_t)); // offset into in args
}
// JNI calling convention
X86_64JniCallingConvention::X86_64JniCallingConvention(bool is_static,
bool is_synchronized,
bool is_fast_native,
bool is_critical_native,
const char* shorty)
: JniCallingConvention(is_static,
is_synchronized,
is_fast_native,
is_critical_native,
shorty,
kX86_64PointerSize) {
}
uint32_t X86_64JniCallingConvention::CoreSpillMask() const {
return is_critical_native_ ? 0u : kCoreCalleeSpillMask;
}
uint32_t X86_64JniCallingConvention::FpSpillMask() const {
return is_critical_native_ ? 0u : kFpCalleeSpillMask;
}
size_t X86_64JniCallingConvention::FrameSize() const {
if (is_critical_native_) {
CHECK(!SpillsMethod());
CHECK(!HasLocalReferenceSegmentState());
return 0u; // There is no managed frame for @CriticalNative.
}
// Method*, PC return address and callee save area size, local reference segment state
DCHECK(SpillsMethod());
const size_t method_ptr_size = static_cast<size_t>(kX86_64PointerSize);
const size_t pc_return_addr_size = kFramePointerSize;
const size_t callee_save_area_size = CalleeSaveRegisters().size() * kFramePointerSize;
size_t total_size = method_ptr_size + pc_return_addr_size + callee_save_area_size;
DCHECK(HasLocalReferenceSegmentState());
// Cookie is saved in one of the spilled registers.
return RoundUp(total_size, kStackAlignment);
}
size_t X86_64JniCallingConvention::OutFrameSize() const {
// Count param args, including JNIEnv* and jclass*.
size_t all_args = NumberOfExtraArgumentsForJni() + NumArgs();
size_t num_fp_args = NumFloatOrDoubleArgs();
DCHECK_GE(all_args, num_fp_args);
size_t num_non_fp_args = all_args - num_fp_args;
// The size of outgoing arguments.
size_t size = GetNativeOutArgsSize(num_fp_args, num_non_fp_args);
if (UNLIKELY(IsCriticalNative())) {
// We always need to spill xmm12-xmm15 as they are managed callee-saves
// but not native callee-saves.
static_assert((kCoreCalleeSpillMask & ~kNativeCoreCalleeSpillMask) == 0u);
static_assert((kFpCalleeSpillMask & ~kNativeFpCalleeSpillMask) != 0u);
static_assert(
kAlwaysSpilledMmxRegisters == POPCOUNT(kFpCalleeSpillMask & ~kNativeFpCalleeSpillMask));
size += kAlwaysSpilledMmxRegisters * kMmxSpillSize;
// Add return address size for @CriticalNative
// For normal native the return PC is part of the managed stack frame instead of out args.
size += kFramePointerSize;
}
size_t out_args_size = RoundUp(size, kNativeStackAlignment);
if (UNLIKELY(IsCriticalNative())) {
DCHECK_EQ(out_args_size, GetCriticalNativeStubFrameSize(GetShorty(), NumArgs() + 1u));
}
return out_args_size;
}
ArrayRef<const ManagedRegister> X86_64JniCallingConvention::CalleeSaveRegisters() const {
if (UNLIKELY(IsCriticalNative())) {
DCHECK(!UseTailCall());
static_assert(std::size(kCalleeSaveRegisters) > std::size(kNativeCalleeSaveRegisters));
// TODO: Change to static_assert; std::equal should be constexpr since C++20.
DCHECK(std::equal(kCalleeSaveRegisters,
kCalleeSaveRegisters + std::size(kNativeCalleeSaveRegisters),
kNativeCalleeSaveRegisters,
[](ManagedRegister lhs, ManagedRegister rhs) { return lhs.Equals(rhs); }));
return ArrayRef<const ManagedRegister>(kCalleeSaveRegisters).SubArray(
/*pos=*/ std::size(kNativeCalleeSaveRegisters));
} else {
return ArrayRef<const ManagedRegister>(kCalleeSaveRegisters);
}
}
bool X86_64JniCallingConvention::IsCurrentParamInRegister() {
return !IsCurrentParamOnStack();
}
bool X86_64JniCallingConvention::IsCurrentParamOnStack() {
return CurrentParamRegister().IsNoRegister();
}
ManagedRegister X86_64JniCallingConvention::CurrentParamRegister() {
ManagedRegister res = ManagedRegister::NoRegister();
if (!IsCurrentParamAFloatOrDouble()) {
switch (itr_args_ - itr_float_and_doubles_) {
case 0: res = X86_64ManagedRegister::FromCpuRegister(RDI); break;
case 1: res = X86_64ManagedRegister::FromCpuRegister(RSI); break;
case 2: res = X86_64ManagedRegister::FromCpuRegister(RDX); break;
case 3: res = X86_64ManagedRegister::FromCpuRegister(RCX); break;
case 4: res = X86_64ManagedRegister::FromCpuRegister(R8); break;
case 5: res = X86_64ManagedRegister::FromCpuRegister(R9); break;
static_assert(5u == kMaxIntLikeRegisterArguments - 1, "Missing case statement(s)");
}
} else if (itr_float_and_doubles_ < kMaxFloatOrDoubleRegisterArguments) {
// First eight float parameters are passed via XMM0..XMM7
res = X86_64ManagedRegister::FromXmmRegister(
static_cast<FloatRegister>(XMM0 + itr_float_and_doubles_));
}
return res;
}
FrameOffset X86_64JniCallingConvention::CurrentParamStackOffset() {
CHECK(IsCurrentParamOnStack());
size_t args_on_stack = itr_args_
- std::min(kMaxFloatOrDoubleRegisterArguments,
static_cast<size_t>(itr_float_and_doubles_))
// Float arguments passed through Xmm0..Xmm7
- std::min(kMaxIntLikeRegisterArguments,
static_cast<size_t>(itr_args_ - itr_float_and_doubles_));
// Integer arguments passed through GPR
size_t offset = displacement_.Int32Value() - OutFrameSize() + (args_on_stack * kFramePointerSize);
CHECK_LT(offset, OutFrameSize());
return FrameOffset(offset);
}
ManagedRegister X86_64JniCallingConvention::LockingArgumentRegister() const {
DCHECK(!IsFastNative());
DCHECK(!IsCriticalNative());
DCHECK(IsSynchronized());
// The callee-save register is RBX is suitable as a locking argument.
static_assert(kCalleeSaveRegisters[0].Equals(X86_64ManagedRegister::FromCpuRegister(RBX)));
return X86_64ManagedRegister::FromCpuRegister(RBX);
}
ManagedRegister X86_64JniCallingConvention::HiddenArgumentRegister() const {
CHECK(IsCriticalNative());
// RAX is neither managed callee-save, nor argument register, nor scratch register.
DCHECK(std::none_of(kCalleeSaveRegisters,
kCalleeSaveRegisters + std::size(kCalleeSaveRegisters),
[](ManagedRegister callee_save) constexpr {
return callee_save.Equals(X86_64ManagedRegister::FromCpuRegister(RAX));
}));
return X86_64ManagedRegister::FromCpuRegister(RAX);
}
// Whether to use tail call (used only for @CriticalNative).
bool X86_64JniCallingConvention::UseTailCall() const {
CHECK(IsCriticalNative());
// We always need to spill xmm12-xmm15 as they are managed callee-saves
// but not native callee-saves, so we can never use a tail call.
return false;
}
} // namespace x86_64
} // namespace art